ISC – 02 : SISTEM MANAJEMEN K3 DAN PENGENDALIAN LINGKUNGAN

PELATIHAN
PELAKSANA BANGUNAN IRIGASI
(IRRIGATION STRUCTURES CONSTRUCTIONS ENGINEER)
PEKERJAAN SUMBER DAYA AIR

DEPARTEMEN PEKERJAAN UMUM
BADAN PEMBINAAN KONSTRUKSI DAN SUMBER DAYA MANUSIA
PUSAT PEMBINAAN KOMPETENSI DAN PELATIHAN KONSTRUKSI
KATA SAMBUTAN

Sampai saat ini upaya meningkatkan kualitas Sumber Daya Manusia baru merupakan wacana belum merupakan kegiatan yang dilakukan dengan sungguh-sungguh, hal ini dapat dilihat seperti yang terpetakan dalam laporan UNDP (Human Development Report, 2004) yang mencantumkan Indeks Pengembangan SDM (Human Development Index HDI), Indonesia pada urutan 111, satu tingkat diatas Vietnam urutan 112, jauh di bawah dari Negara-negara ASEAN terutama Malaysia urutan 59, Singapura urutan 25, dan Australia urutan 3.

Bagi para pemerhati dan khususnya bagi yang terlibat langsung dalam pengembangan Sumber Daya Manusia (SDM), kondisi tersebut merupakan tantangan sekaligus sebagai modal untuk berpacu mengejar ketinggalan dan obsesi dalam meningkatkan kemampuan SDM paling tidak setara dengan Negara tetangga ASEAN, terutama menghadapi era globalisasi.

Berbagai perangkat aturan telah disusun, diantaranya yang berkaitan dengan pengembangan ketenagakerjaan seperti Undang-undang yang mengamanatkan pengembangan SDM, khususnya tentang tenaga kerja dan kegiatan Jasa Konstruksi seperti:

- UU No. 18 tahun 1999, tentang : Jasa Konstruksi beserta peraturan pelaksanaannya, mengamanatkan perlunya "Bakuan Kompetensi" untuk semua tingkatan kualifikasi dan klasifikasi keahlian dan keterampilan di bidang Jasa Konstruksi.
- UU No. 13 tahun 2003, tentang : Ketenagakerjaan, mengamanatkan (pasal 10 ayat (2)). Pelatihan kerja diselenggarakan berdasarkan program pelatihan yang mengacu pada standar kompetensi kerja.

Mengacu pada amanat kedua undang-undang tersebut di atas, diimplementasikan kedalam konsep Pengembangan Sistem Pelatihan Jasa Konstruksi, yang oleh PUSLATJAKONS (Pusat Pelatihan Jasa Konstruksi) pelaksanaan programnya didahului dengan mengembangkan SKKNI (Standar Kompetensi Kerja Nasional Indonesia), SLK (Standar Latihan Kerja), dimana keduanya disusun melalui analisis struktur kompetensi sektor / sub sektor konstruksi sampai mendetail, kemudian dituangkan dalam jabatan-jabatan kerja yang selanjutnya dimasukan ke dalam Katalog Jabatan Kerja. Modul Pelatihan Sistem Manajemen K3 dan Lingkungan, adalah salah satu paket pelatihan yang diambil dari hasil inventarisasi jabatan kerja yang kemudian dikembangkan berdasarkan SKKNI (Standar Kompetensi Kerja Nasional Indonesia)
dan SLK (Standar Latihan Kerja) yang sudah disepakati dalam suatu konvensi Nasional, dimana modul-modulnya maupun materi uji kompetensinya disusun oleh Tim Penyusun / tenaga profesional dalam bidangnya masing-masing, merupakan suatu produk yang akan dipergunakan untuk melatih, dan meningkatkan pengetahuan dan kecakapan agar dapat mencapai tingkat kompetensi yang dipersyaratkan dalam SKKNI, sehingga dapat menyiapkan langsung sasaran pembinaan dan peningkatan kualitas tenaga kerja konstruksi agar menjadi kompeten dalam melaksanakan tugas pada jabatan kerjanya.

Dengan penuh harapan modul pelatihan ini dapat dimanfaatkan dengan baik, sehingga cita-cita peningkatan kualitas SDM khususnya dibidang jasa konstruksi dapat terwujud.

Jakarta, Desember 2004
Kepala Pusat Pelatihan Jasa Konstruksi

Ir. Sumaryanto Widavatin, MSCE
NIP. 110025689
KATA PENGANTAR

Usaha dibidang Jasa konstruksi merupakan salah satu bidang usaha yang telah berkembang pesat di Indonesia, baik dalam bentuk usaha perorangan maupun sebagai badan usaha skala kecil, menengah dan besar. Untuk itu perlu diimbangi dengan kualitas pelayanannya. Pada kenyataannya saat ini bahwa mutu produk, ketepatan waktu penyelesaian, dan efisieni pemanfaatan sumber daya relatif masih rendah dan yang diharapkan. Hal ini disebabkan oleh beberapa faktor antara lain adalah ketersediaan tenaga ahli / trampii dan penguasaan manajemen yang efisien, kecukupan permodalan serta penguasaan teknologi.

Masyarakat sebagai pemakai produk jasa konstruksi semakin sadar akan kebutuhan terhadap produk dengan kualitas yang memenuhi standar mutu yang dipersyaratkan. Untuk memenuhi kebutuhan terhadap produk sesuai kualitas standar tersebut, perlu dilakukan berbagai upaya, mulai dari peningkatan kualitas SDM, standar mutu, metode kerja dan lain-lain.

Salah satu upaya untuk memperoleh produk konstruksi dengan kualitas yang diinginkan adalah dengan cara meningkatkan kualitas sumber daya manusia yang menggeluti pekerjaan konstruksi baik untuk bidang pekerjaan jalan dan jembatan, pekerjaan sumber daya air maupun untuk pekerjaan dibidang bangunan gedung.

Kegiatan inventarisasi dan analisa jabatan kerja dibidang Sumber Daya Air, telah menghasilkan sekitar 130 (seratus tiga puluh) Jabatan Kerja, dimana Jabatan Kerja Irrigation Structures Constructions Engineer merupakan salah satu jabatan kerja yang diprioritaskan untuk usulum materi pelatihannya mengingat kebutuhan yang sangat mendesak dalam pemahaman tenaga kerja yang berkibrah dalam pekerjaan konstruksi bidang sumber daya air.

Materi pelatihan pada Jabatan Kerja Irrigation Structures Constructions Engineer ini terdiri dari 10 (Sepuluh) modul yang merupakan satu kesatuan yang utuh yang diperlukan dalam melatih tenaga kerja yang menggeluti Irrigation Structures Constructions Engineer.

Namun penulis menyadari bahwa materi pelatihan ini masih banyak kekurangan khususnya untuk modul Sistem Manajemen K3 dan Pengendalian Lingkungan pekerjaan konstruksi Sumber Daya Air.

Untuk itu dengan segala kerendahan hati, kami mengharapkan kritik, saran dan masukan guna perbaikan dan penyempurnaan modul ini.

Jakarta, Desember 2004

Tim Penyusun
LEMBAR TUJUAN

JUDUL PELATIHAN : PELAKSANA BANGUNAN IRIGASI

TUJUAN PELATIHAN

A. Tujuan Umum Pelatihan
 Mampu melaksanakan pekerjaan Bangunan Irigasi sesuai dengan Gambar Desain dan Spesifikasi Teknik.

B. Tujuan Khusus Pelatihan
 Setelah mengikuti pelatihan peserta mampu:

3. Melaksanakan Pekerjaan Persiapan Pelaksanaan
5. Membuat Laporan Kepelbadaan Pekerjaan Harian, Mingguan.
NOMOR / JUDUL MODUL : ISC – 02 / SISTEM MANAJEMEN K3 DAN PENGENDALIAN LINGKUNGAN

TUJUAN INSTRUKSIONAL UMUM (TIU)

Setelah modul ini dipelajari, peserta mampu menerapkan prinsip-prinsip Keselamatan dan Kesehatan Kerja (K3) dalam pekerjaan konstruksi, proses Pengendalian Lingkungan dan menjaga kelestarian budaya dan adat istiadat setempat.

TUJUAN INSTRUKSIONAL KHASUS (TIK)

Pada akhir pelatihan peserta mampu:
1. Menjelaskan sistem Manajemen K3
2. Menjelaskan prosedur Pemeriksaan dan Pengendalian K3
3. Menjelaskan sistem pelaporan dengan formulir-formulir standar
5. Menguraikan pengertian AMDAL, ANDAL, RKL dan RPL.
6. Menguraikan masalah budaya dan adat istiadat yang sangat beragam dipelosok nusantara yang perlu dijaga agar tidak menimbulkan masalah.
DAFTAR ISI

KATA PENGANTAR .. i
LEMBAR TUJUAN .. iii
DAFTAR ISI ... v
DESKRIPSI SINGKAT PENGEMBANGAN MODUL viii
DAFTAR MODUL ... ix
PANDUAN PEMBELAJARAN .. ix
MATERI SERAHAN .. x
PENDAHULUAN ... xvii

BAGIAN KE SATU SISTEM MANAJEMEN K3

BAB 1 PENDAHULUAN .. 1-1
 1.1 Umum ... 1-1
 1.2 Sistem Manajemen K3 ... 1-1

BAB 2 KEBIJAKAN, PEMBUATAN PROGRAM DAN ACUAN K3 2-1
 2.1 Kebijakan .. 2-1
 2.2 Pembuatan Program .. 2-2
 2.3 Acuan ... 2-4

BAB 3 SISTEM MANAJEMEN K3 ... 3-1
 3.1 Pengembangan Sistem Manajemen K3 ... 3-1
 3.2 Element dalam Sistem Manajemen K3 .. 3-2
 3.3 Jamu dan Kemanduan ... 3-10
 3.4 Kegiatan Pendukung ... 3-13
 3.5 Identifikasi Sumber Bahaya, Penilaian dan Pengendalian Resiko 3-14
 3.6 Penerapan Rencana K3 ... 3-18
 3.7 Tinjauan Ulang dan Peningkatan oleh Pihak Manajemen 3-20

BAB 4 PROSEDUR PEMERIKSAAN DAN PENGENDALIAN 4-1
 4.1 Pengertian ... 4-1
 4.2 Prosedur Pemeriksaan Dan Tindakan Perbaikan 4-1
 4.3 Prosedur Pengendalian ... 4-3
 4.4 Siklus Penanganan K3 .. 4-3
 4.4.1 Siklus Harian K3 ... 4-3
 4.4.2 Siklus Mingguan K3 ... 4-4
 4.4.3 Siklus Bulanan K3 ... 4-5
BAB 5 ADMINISTRASI DAN PELAPORAN K3 .. 5-1
 5.1 Administrasi K3 .. 5-1
 5.2 Pelaporan K3 .. 5-4

BAGIAN KE DUA PENGENDALIAN LINGKUNGAN

BAB 1 PENDAHULUAN ... 1-1

BAB 2 PENGERTIAN DASAR LINGKUNGAN HIDUP 2-4
 2.1 Konsep Lingkungan Hidup 2-4
 2.2 Ekologi dan Ekosistem ... 2-5
 2.3 Baku Mutu Lingkungan ... 2-5

BAB 3 INTEGRASI ASPEK LINGKUNGAN PADA KEGIATAN PROYEK 3-1
 3.1 Pengertian Amdal ... 3-1
 3.2 Kedudukan Amdal dalam Proses Pengembangan Proyek 3-3
 3.3 Proses Penyusunan Dan Pelaksanaan Amdal 3-6

BAB 4 PENANGANAN DAMPAK LINGKUNGAN PADA PEKERJAAN
 KONSTRUKSI .. 4-1
 4.1 Prinsip Dasar Pengelolaan Lingkungan Hidup 4-1
 4.2 Komponen Pekerjaan Konstruksi yang Menimbulkan Dampak ... 4-4
 4.3 Dampak yang Timbul pada Pekerjaan Konstruksi dan Upaya
 Menanganinya .. 4-4

BAB 5 SOSIAL BUDAYA DAN HUBUNGAN MASYARAKAT 5-1
 5.1 Menerima Sosial Budaya 5-1
 5.2 Azas Legalitas Pedesaan 5-4
 5.3 Penanganan Keamanan Lingkungan Proyek 5-6
 5.3.1 Kelembagaan Keamanan 5-6
 5.3.2 Keamanan Informal 5-7

BAB 6 ASPEK-ASPEK PENGADAAN TANAH .. 6-1
 6.1 Umum ... 6-1
 6.2 Status Hukum Azas Tanah 6-3
 6.3 Pengadaan Tanah ... 6-3
 6.3.1 Sebelum Pengadaan Tanah 6-3
 6.3.2 Pada Saat Pengadaan Tanah 6-5
 6.3.3 Sesudah Pengadaan Tanah 6-7
 6.3.4 Pemanfaatan Tanah 6-7
6.3.5 Pengamanan Fisik ... 6-7
6.3.6 Pengamanan Yuridis ... 6-7
6.4 Dasar Hukum dan Prosedur Pengadaan Tanah 6-8
 6.4.1 Dasar Hukum .. 6-8
 6.4.2 Prosedur Pengadaan Tanah 6-9

DAFTAR PUSTAKA .. 6-25

LAMPIRAN :
Lampiran 1: Bagan Air Integrasi Amdal dalam Proses Pengembangan Proyek
Lampiran 2: Proses Penyusunan Amdal
Lampiran 3: Baku Mutu Air pada Sumber Air
DESKRIPSI SINGKAT PENGEMBANGAN MODUL
PELATIHAN PELAKSANA BANGUNAN IRIGASI

1. Kompetensi kerja yang disyaratkan untuk jabatan kerja PELAKSANA BANGUNAN IRIGASI (IRRIGATION STRUCTURES CONSTRUCTION ENGINEER) dibakukan dalam Standar Kompetensi Kerja Nasional Indonesia (SKKNI) yang didalamnya telah ditetapkan unit-unit kompetensi, elemen kompetensi dan kriteria unjuk kerja, sehingga dalam Pelatihan PELAKSANA BANGUNAN IRIGASI, unit-unit kompetensi tersebut menjadi Tujuan Khusus Pelatihan.

2. Standar Latihan Kerja (SLK) disusun berdasarkan analisa dari masing-masing Unit Kompetensi, Elemen Kompetensi dan Kriteria Unjuk Kerja yang menghasilkan kebutuhan pengetahuan, keterampilan dan sikap pelaku dari setiap Elemen Kompetensi yang dituangkan dalam bentuk satu-satu sasuan kurikulum dan silabus pelatihan yang diperlukan untuk memenuhi tujuan kompetensi tersebut.

3. Untuk mendukung tercapainya tujuan khusus pelatihan tersebut, maka berdasarkan Kurikulum dan Silabus yang ditetapkan dalam SLK, disusun seperangkat modul pelatihan (seperti tercantum dalam daftar modul) yang harus menjadi bahan pengajaran dalam pelatihan PELAKSANA BANGUNAN IRIGASI.
DAFTAR MODUL

PELATIHAN : PELAKSANA BANGUNAN IRIGASI
(IRRIGATION STRUCTURES CONSTRUCTION ENGINEER)

Merupakan salah satu dari:

<table>
<thead>
<tr>
<th>NO.</th>
<th>KODE</th>
<th>JUDUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ISC - 01</td>
<td>UUJK, Etika Profesi, Etos Kerja dan UUSDA</td>
</tr>
<tr>
<td>2</td>
<td>ISC - 02</td>
<td>Sistem Manajemen K3 dan Pengendalian Lingkungan</td>
</tr>
<tr>
<td>3</td>
<td>ISC - 03</td>
<td>Spesifikasi Pekerjaan Sumber Daya Air</td>
</tr>
<tr>
<td>4</td>
<td>ISC - 04</td>
<td>Perhitungan Biaya Konstruksi</td>
</tr>
<tr>
<td>5</td>
<td>ISC - 05</td>
<td>Pengetahuan dan Karakteristik Bahan</td>
</tr>
<tr>
<td>6</td>
<td>ISC - 06</td>
<td>Dokumen Kontrak</td>
</tr>
<tr>
<td>7</td>
<td>ISC - 07</td>
<td>Tahapan dan Metode Pelaksanaan</td>
</tr>
<tr>
<td>8</td>
<td>ISC - 08</td>
<td>Pengendalian Biaya, Mutu dan Waktu</td>
</tr>
<tr>
<td>9</td>
<td>ISC - 09</td>
<td>Pengukuran dan Perhitungan Hasil Pekerjaan</td>
</tr>
<tr>
<td>10</td>
<td>ISC - 10</td>
<td>Pengenalan Manajemen Proyek</td>
</tr>
</tbody>
</table>
PANDUAN PEMBELAJARAN

Pelatihan : Pelaksana Bangunan Irigasi
Deskripsi : Materi ini ; Bagian ke satu menguraikan masalah sistem manajemen keselamatan dan kesehatan kerja agar dalam melaksanakan pekerjaan konstruksi tenaga kerja yang umumnya berpendidikan rendah terhindar dari bahaya kecelakaan atau penyakit, paling tidak bahaya tersebut diperkecil atau diminimalisasi dengan adanya penerapan K3.

Bagian ke dua menguraikan masalah lingkungan, juga agar dalam melaksanakan pembangunan masalah pencemaran dan kerusakan lingkungan dapat dihindari. Untuk itu peraturan dan perundang-undangan mengenai lingkungan diterbitkan, agar perolehan sumber daya alam terjaga baik dan masyarakat tidak banyak dirugikan.

Tempat Kegiatan : Dalam Ruang Kelas
Waktu Kegiatan : 2 Jam pelajaran (1 jam pelajaran = 45 menit)

<table>
<thead>
<tr>
<th>No.</th>
<th>Kegiatan Instruktur</th>
<th>Kegiatan Peserta</th>
<th>Pendukung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ceramah : Pembukaan</td>
<td>- Mengikuti penjelasan TIU & TIK dengan tekun dan aktif</td>
<td>O H T</td>
</tr>
<tr>
<td></td>
<td>- Menjelaskan Tujuan Instruksional (TIU & TIK)</td>
<td>- Bertanya bila ada yang kurang jelas</td>
<td>No. 4 ~ 6</td>
</tr>
<tr>
<td></td>
<td>- Merangsang motivasi peserta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dengan pertanyaan atau pengalamannya tentang penerapan K3 dan pengendalian lingkungan dilapangan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Waktu : 5 menit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Ceramah : Pendahuluan</td>
<td>- Mengikuti penjelasan TIU & TIK dengan tekun dan aktif</td>
<td>O H T</td>
</tr>
<tr>
<td></td>
<td>- Menjelaskan jenis dan Konstruksi Bangunan irigasi, lingkup pekerjaan seorang Pelaksana Bangunan Irigasi, serta maksud pelatihan modul tersebut</td>
<td>- Bertanya bila ada yang kurang jelas</td>
<td>No. 7</td>
</tr>
<tr>
<td>Waktu</td>
<td>5 menit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahan</td>
<td>Materi serahan (Bab I: Pendahuluan)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Ceramah: Bagian ke satu, Pendahuluan Manajemen K3
- Menjelaskan hubungan antara kecelakaan dan penyakit akibat kerja dengan manajemen K3, bahwa tingkat peredaran tenaga kerja dalam sektor konstruksi masih rendah, perlu dilindungi, karena peran tenaga kerja sangat penting, jadi apabila manajemen K3 diterapkan kecelakaan dan penyakit bias dicegah, dikendalikan dan diminimalisasi.
- Waktu: 5 menit
- Bahan: Materi serahan (Bab I: Bagian ke satu, Pendahuluan Manajemen K3)

4. Ceramah: Kebijakan pembuatan program dan acuan K3
- Mengurutkan tentang komitmen Pimpinan, pemaksaan suatu organisasi atau perusahaan akan pentingnya menghargai keselamatan dan kesehatan kerja (K3). Dengan adanya komitmen, timbul kebijakan, yaitu menyiapkan organisasi K3, SDM K3, program K3 dan menyediakan anggaran untuk K3.
- Waktu: 5 menit
- Bahan: Materi serahan (Bab II: Kebijakan pembuatan program dan acuan K3)
|-----|-------------------------------|---|--------------------------------------|
| 5. | Menguraikan tentang sistem manajemen keselamatan dan kesehatan kerja (SMK3) yang dibuat oleh luar negeri, tujuan dan sasaran K3, identifikasi bahaya, penilaian dan pengendalian resiko, program K3, pengukuran, pemantauan dan pengevaluasiann kinerja K3.
- Waktu: 10 menit
- Bahan: Materi serahan (Bab III: Sistem Manajemen K3) | Mengikuti penjelasan TIU & TIK dengan tekun dan aktif
- Bertanya bila ada yang kurang jelas | Mengikuti penjelasan TIU & TIK dengan tekun dan aktif
- Bertanya bila ada yang kurang jelas

<table>
<thead>
<tr>
<th>O H T</th>
<th>No. 19 ~ 38</th>
</tr>
</thead>
</table>

| 6. | Ceramah: Prosedur pemeriksaan dan pengendalian
- Menguraikan prosedur pemeriksaan atas pelaksanaan penerapan K3 apakah sudah sesuai dengan standar yang telah ditetapkan. Pemeriksaan yang bersifat tepat waktu dilakukan secara harian, mingguan, bulanan. Tindakan perbaikan apabila ditemukan ketidaksesuaian dengan ketentuan / standard yang ditetapkan dalam sasaran program K3.
- Waktu: 25 menit
- Bahan: Materi serahan (Bab IV: Prosedur pemeriksaan dan pengendalian) |

| O H T | No. 39 ~ 41 |

| 7. | Ceramah: Administrasi dan pelaporan K3
- Menjelaskan administrasi K3 yang harus dilaksanakan internal dan external oleh perusahaan. Pelaporan external kepada dinas tenaga kerja kantor wilayah propinsi / suku dinas tenaga kerja setempat, Dinas Pekerjaan Umum, Pemerintah dan Lingkungan setempat dan surat-surat ijin operasi yang dipertukankan. |

<p>| O H T | No. 42 ~ 44 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendahuluan Pengendalian Lingkungan.</td>
<td></td>
</tr>
<tr>
<td>- Menjelaskan perlunya pengelolaan lingkungan hidup didalam rangka pembangunan. Dengan meningkatnya pertumbuhan penduduk, pembangunan juga meningkat yang cenderung merusak sumber daya alam, maka perlu diupayakan dalam pemanfaatan sumber daya alam tetapi tidak merusaknya, maka pemerintah mengeluarkan peraturan dan perundangan mengenai Lingkungan Hidup.</td>
<td>- Mengukur penjelasan TIU & TIK dengan tekun dan aktif - Bertanya bila ada yang kurang jelas</td>
</tr>
<tr>
<td>- Waktu : 5 menit</td>
<td>- Waktu : 5 menit</td>
</tr>
<tr>
<td>- Bahan : Materi serahan (Bab V: Administrasi dan pelaporan K3.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mengikuti penjelasan TIU & TIK dengan tekun dan aktif - Bertanya bila ada yang kurang jelas</td>
</tr>
</tbody>
</table>

OHT

No. 45 - 48

OHT
No. 49 - 54
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahan : Materi serahan (Bab II : Pengertian dasar Lingkungan Hidup)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Menguraikan pengertian AMDAL (Analisis Mengenai Dampak Lingkungan), KA-AMDAL (Kerangka Acuan ANDAL), ANDAL (analisis Dampak Lingkungan), RKL (Rencana Pengelolaan Lingkungan), RPL (Rencana Pemantauan Lingkungan) dalam hubungannya yang menimbulkan dampak penting pada pembangunan proyek pada tahap pra studi kalayakan, maupun pada tahap pelaksanaan dan pengoperasian.</td>
</tr>
<tr>
<td></td>
<td>- Waktu : 10 menit</td>
</tr>
<tr>
<td></td>
<td>- Bahan : Materi serahan (Bab III : Integrasi aspek lingkungan pada kegiatan proyek).</td>
</tr>
<tr>
<td></td>
<td>- Menguraikan penting prinsip pengelolaan lingkungan yaitu upaya tetap U dalam melakukan pemetaan, penataan, pemeliharaan, pengawasan, pengendalian dan pengembangan lingkungan hidup, sehingga pelestarian Sumber Daya Alam dapat tetap dipertahankan dan pencegahan atau kerusakan lingkungan dapat dicegah.</td>
</tr>
<tr>
<td></td>
<td>- Waktu : 10 menit</td>
</tr>
<tr>
<td></td>
<td>- Bahan : Materi serahan (Bab IV : Penanggulangan Dampak Lingkungan pada pekerjaan konstruksi)</td>
</tr>
</tbody>
</table>

- Mengikuti penjelasan TIU & TIK dengan tekun dan aktif |
- Bertanya bila ada yang kurang jelas

OHT No. 55 ~ 57

OHT No. 58 ~ 60
 - Menguraikan budaya dan adat istiadat dipilosok nusantara yang sangat beragam dan perlu dijaga kelestariannya dalam melaksanakan pembangunan fisik. Masalah tersebut perlu diperhatikan agar tidak menimbulkan masalah dan gangguan keamanan.
 - Waktu: 10 menit
 - Bahan: Materi serahan (Bab V: Sosial budaya dan hubungan masyarakat pada pekerjaan konstruksi)

 - Menguraikan pembatasan tanah untuk keperluan prasarana dan sarana pengairan. Pelaksanaannya agar mengikuti beratatan perundangan, sedangkan sumbangan adat istiadat dan perlu melakukan sosialisasi yang cukup agar masyarakat mengerti akan arti dan manfaat pembangunan yang akan dilaksanakan, terutama imbalan yang akan diterima sebagai ganti rugi jangan sampai masyarakat dirugikan.
 - Waktu: 10 menit
 - Bahan: Materi serahan (Bab VI: Aspek-aspek pengadaan tanah)

		OHT
	Mengikuti penjelasan TIU & TIK dengan tekun dan aktif	No. 61 ~ 63
	Bertanya bila ada yang kurang jelas	

		OHT
	Mengikuti penjelasan TIU & TIK dengan tekun dan aktif	No. 64, 65
	Bertanya bila ada yang kurang jelas	

xv
MATERI SERAHAN

PUSLATJAKONS
PENDAHULUAN

1.1. Umum.

Pekerjaan irigasi umumnya terdiri dari dua bagian besar yaitu Pekerjaan Saluran Irigasi dan Pekerjaan Bangunan Irigasi. Pekerjaan Saluran Irigasi ialah untuk membuat seluruh jenis Saluran Irigasi, saluran induk / primer, sekunder, tertier dan saluran pembuangan (drainase) serta pembuatan tanggul.

Bangunan Irigasi sendiri terdiri dari 3 bagian yaitu:

a. Bangunan Utama

Bangunan Utama adalah bangunan yang berfungsi mengalirkan air dari sungai ke saluran primer. Bangunan utama ini terdiri dari:

- Bangunan Pengelak (Bendung)
- Bangunan Pengambilan
- Bangunan Pembilas (penguras)
- Kantong Lumpur
- Pekerjaan Sungai
- Pekerjaan Pelengkap

b. Bangunan Bagi / Sadap

Bangunan ini terdiri pada saluran primer, sekunder dan tertier. Berfungsi untuk membagikan dari saluran primer ke saluran sekunder dan tertier atau dari saluran sekunder ke saluran tertier.

c. Bangunan Pelengkap

Bangunan ini adalah seluruh bangunan didaerah irigasi diluar dari Bangunan Utama dan Bangunan Bagi / Sadap seperti:

- Talang
- Siphon
- Flume
- Bangunan terjun
- Jembatan
- Gorong-gorong
- Jalan
- Rumah jaga dll
1.2. Lingkup Pekerjaan Pelaksana Bangunan Irigasi

Yang menjadi lingkup pekerjaan Pelaksana Bangunan Irigasi adalah pekerjaan untuk membangun ke 3 (tiga) jenis bangunan diatas yakni Bangunan Utama, Bangunan Bagi Sadap dan Bangunan Pelengkap.

Alat kelengkapan yang terdapat didalam masing-masing bangunan seperti pintu alat pengukur dan lain-lain, tidak termasuk bagian pekerjaan yang akan dilaksanakan oleh pelaksana bangunan irigasi ini.

Alat-alat tersebut akan dikerjakan dan dipasang kedalam Bangunan Irigasi oleh Pelaksana lain.

Jadi lingkup tugas seorang Pelaksana Bangunan Irigasi adalah terbatas pada Pekerjaan Fisik Bangunan mulai dari pekerjaan persiapan sampai bangunan tersebut selesai seluruhnya (100%).

1.3. Maksud dan Tujuan

Sebagaimana diketahui situasi yang mengancam keamanan dan kenyamanan dalam bekerja bagi pekerja konstruksi perlu dijaga, maka penerapan K3 dan Pengendalian Lingkungan diharapkan bisa meniadakan atau setidaknya meminimalkan kecelakaan dan gangguan lingkungan.

Jadi maksud dan tujuan dari modul ini adalah untuk memperkenalkan dan membekali peserta pelatihan tentang K3 dan Pengendalian Lingkungan dalam pekerjaan dibidang Sumber Daya Air khususnya Bangunan Irigasi.
BAGIAN KE SATU
SISTEM MANAJEMEN KESELAMATAN DAN KESEHATAN KERJA (K3)

BAB 1
PENDAHULUAN

1.1. Umum.

Dalam pelaksanaan proses pekerjaan konstruksi dituntut penggunaan tenaga kerja yang sangat dominan. Pada kenyataannya, tingkat pendidikan pekerja dalam sektor konstruksi relatif rendah bila dibandingkan sektor lain, misalnya sektor manufaktur.

Keadaan ini terjadi di Indonesia pada khususnya, maupun di negara-negara lain pada umumnya. Tenaga kerja ini perlu untuk dilindungi, bukan hanya karena peraturan yang mengharuskan, akan tetapi karena tenaga kerja adalah modal usaha yang perlu dijaga dan dibina agar dapat memberi manfaat dan keuntungan perusahaan.

Setiap pelaksanaan tugas yang menuntut hasilnya (produknya) sesuai standard kinerja tentunya memerlukan Sumber Daya Manusia (SDM) yang berkualitas dan dinamis. Karena SDM adalah salah satu unsur sumber daya mempunyai arti tersendiri, yaitu SDM itu hidupnya akal pikiran dan kemauan. Sedangkan sumber daya lainnya, uang, material, peralatan / mesin adalah barang mati dan akan ada artinya serta berfungsi sebagaimana mestinya apabila ada campur tangan manusia.

Penggunaan tenaga kerja dalam jumlah besar dengan tingkat pendidikan relatif rendah telah membudidayakan bahwa sektor ini mempunyai andil yang cukup dominan dalam hal timbulnya kecelakaan dan penyakit akibat kerja. Kecelakaan dan penyakit akibat kerja tersebut pada umumnya disebabkan oleh beberapa hal, diantaranya tingkat pengetahuan pekerja yang kurang, kebiasaan buruk yang mereka lakukan, kurang disiplin, kondisi tempat kerja yang kurang terawat dengan baik. Hal ini bisa dicegah, dikendalikan, diminimalisir dan tindak lanjuti dengan baik bila perusahaan menggunakan suatu sistem tertentu, berupa sistem Manajemen Keselamatan dan Kesehatan Kerja.

1.2. Sistem Manajemen K3

Manajemen Keselamatan dan Kesehatan Kerja (Manajemen K3) merupakan rangkaian proses pekerjaan yang mempunyai siklus yang dimulai dari suatu
perencanaan, dilanjuti dengan aplikasi, pemantauan terhadap aplikasi dan peninjauan kembali terhadap perencanaan yang telah dibuat.

Rangkaian tersebut merupakan rangkaian tertutup dan mempunyai semangat adanya perbaikan berkesinambungan. Bila proses tersebut diperhatikan dengan lebih seksama, maka akan terlihat adanya perpaduan yang serasi antara pelaksanaan pekerjaan di lapangan dengan pekerjaan administrasi di atas meja.

Pihak-pihak yang berkompeten dalam bidang K3 telah menyusun Manajemen K3 secara sistematis menjadi suatu sistem Manajemen K3. Ada beberapa sistem Manajemen K3 telah diperkenalkan kepada masyarakat secara luas antaranya:

Tujuan dari penyusunan tulisan adalah para pembaca agar memahami konsep dasar sistem Manajemen K3.
BAB 2
KEBIJAKAN, PEMBUATAN PROGRAM DAN ACUAN K3

2.1 Kebijakan

1. Komitmen:

Sebagaimana diterangkan diatas merupakan landasan utama konsep penerapan sistem Manajemen K3. Komitmen yang dibutuhkan kebijakan dan arahan dalam penerapan K3 di Perusahaan. Komitmen pimpinan pentunya termasuk kesediamannya menyiapkan organisasi K3, SDM K3 dan anggaran K3 yang dituangkan dalam bentuk kebijakan K3 (Safety Policy), secara umum isi dari komitmen tersebut adalah:

- Landasan keberhasilan program K3, merupakan pemetaan sikap dan dukungan manajemen terhadap program K3 dalam perusahaaannya.
- Mengikut semua pihak berkait (stake holder), meliputi manajemen, karyawan, pemegang saham, pelanggan dan masyarakat luas.

2. Kebijakan

Kebijakan yang dijabarkan dalam bentuk kebijakan tertulis (Safety Policy) yang memuat sikap, komitment dan dukungan serta arah kebijakan penerapan K3 dalam perusahaan

- Kebijakan ini memuat seluruh arahan dari target, misi, dan tujuan organisasi dalam penerapan sistem manajemen K3
- Kebijakan dijabarkan pada tingkat pelaksana dalam bentuk peran aktif dan implementasi program K3 dalam perusahaan
- Kebijakan ini dibuat dalam suatu proses yang melibatkan seluruh unsure / komponen yang ada dalam suatu organisasi,
- Kebijakan K3 ditanda tangani oleh manajemen puncak
2.2 Pembuatan Program

Program yang dimaksudkan disini adalah, program umum didalamnya memuat strategi pencapaian penerapan SMK3, secara detail program dapat di aplikasikan dalam bentuk prosedur dan petunjuk kerja, semua ini ditujukan untuk memudahkan dalam menerapkan dan mengembangkan sistem dan prosedur K3 untuk setiap kegiatan operasi sebagai pedoman keselamatan kerja, bekerja secara aman dan yang akan berpengaruh meningkatnya produktivitas kerja, penyusunan elemen K3 disesuaikan dengan kebutuhan masing - masing perusahaan berdasarkan hasil telaah awal dan penetapan tujuan dan objektif yang ingin dicapai.

Penyusunan elemen-elemen K3 dalam program disesuaikan dengan sistem SMK3 yang hendak dijalankan, dapat menggunakan atau memilih sesuai berikut ini sebagai referensi yang hendak ditetapkan, diantaranya :

- PERMENAKER No : PER.05/MEN/1996 tentang Sistem Manajemen Keselamatan dan Kesehatan Kerja
- OHSAS 18001:1999, Occupational Health And Safety Assessment Series
- COHMS, Construction Industry Occupational Health and Safety Management Systems

Telah disebutkan diatas bahwa didalam penyusunan program K3 sangat tergantung dari pemilihan sistem manajemen K3 yang hendak dijalankan, hal ini disesuaikan dengan tingkat kebutuhan Organisasi, sehingga program pelaksanaan K3 telah benar - benar sesuai dengan kebutuhan organisasi / perusahaan, ambil saja contoh misalnya menggunakan SMKI sesuai dengan Permenaker RI No. 05 / MEN / 1996, maka sistem yang dijalankan harus memenuhi 5 prinsip elemen Dasar SMK3 dan 12 elemen K3 Operasional, diantaranya adalah :

1. Prinsip Dasar MK3
 a. Penetapan Kebijakan dan Penjaminan Komitmen K3
 b. Perencanaan Pemenuhan Kebijakan, Tujuan dan Sasaran Penerapan K3
 c. Penerapan Rencana K3 secara Efektif dgn Mengembangkan Kemampuan dan Mekanisme Pendukung yg Diperlukan utk Mencapai Kebijakan, Tujuan dan Sasaran K3
 d. Pengukuran, Pemantauan, dan Pengevaluasian Kinerja K3
e. Peninjauan Secara Teratur dan Peningkatan Penerapan SMK3 secara berkesinambungan

2. Elemen SMK3
 a. Pembangunan dan Pemeliharaan Komitmen
 b. Pendokumentasian Strategi
 c. Peninjauan Ulang Perancangan (Desain) dan Kontrak
 d. Pengendalian Dokumen dan Data K3
 e. Pembelian
 f. Keamanan Bekerja Berdasarkan SMK3
 g. Pengembangan Ketrampilan dan Kemampuan
 h. Komunikasi dan Pelaporan
 i. Pengelolaan Material
 j. Standar Pemantauan
 k. Audit internal SMK3
 l. Tinjauan Manajemen

Dari ke 12 elemen K3 operasional iluh dalam penyusunan program dilaksanakan yang dimulai dari perencanaan penerapan K3 melalui identifikasi bahaya sampai dengan penerapan dan pengendalian operasi yang harus dijalankan.

Contoh penerapan dan pengendalian operasi dari elemen-elemen program K3 yang hendak dijalankan mengikuti prosedur / petunjuk kerja yang harus dijalankan secara konsisten dilapangkan, misalnya seperti:

3. Penerapan (Implementasi) dan Operasi K3
 Sistem dan prosedur termasuk petunjuk kerja meliputi seluruh aspek kegiatan sesuai dengan tingkatan kegiatan yang ada dilapangkan, misalkan diantaranya:
 - Prosedur Kerja Aman (Safe Working Practices)
 - Prosedur kebersihan dan penyelamatan Lingkungan
 - Prosedur penyelamatan keadaan darurat
 - Prosedur Kesehatan Kerja.
 - Prosedur penanggulangan Kebakaran,
 - Prosedur pemenuhan Sarana dan Fasilitas
 - Petunjuk kerja ijin kerja ruang terbatas dan tertutup
 - Prosedur Identifikasi Bahaya (Hazards identification)
 - Prosedur Pembinaan dan Pelatihan (Safety Training& Education)
 - Petunjuk Kerja Evaluasi Keselamatan Proyek (Project Safety Review)
- Petunjuk penggunaan Alat Keselamatan (Safety Equipment)
- Prosedur pengelolaan Keselamatan Lalu Lintas Jalan (Traffic Safety)
- Petunjuk Kerja Inspeksi K3 (Safety Inspection)
- Prosedur Penyelidikan Kecelakaan (Incident Investigation)
- Prosedur Pengelolaan Limbah (Waste Management)
- Petunjuk Kerja Sistem Pelaporan K3 (Safety Reporting Systems)
- Prosedur Audit K3 (Safety Audit)

Secara detail pembuatan program kerja akan diterangkan dalam Bab 4, Sistem Manajemen Keselamatan Kerja (SMK3), yang merupakan bagian dari perencanaan K3.

2.3 Acuan

Acuan disini adalah dasar referensi atas pelaksanaan SMK3 yang hendak dijalankan, dan ini merupakan hukum dan peraturan dan perundang-undangan K3 yang berlaku di tempat kegiatan kerja. Acuan atau rujukan ini disebutkan pada ketentuan:

1. Undang-Undang No. 1 thn 1970 tentang Keselamatan Kerja
2. Undang-Undang No. 13 tahun 2003 tentang Ketenagakerjaan
3. PERMENAKER No. Per 01/MEN/1980 tentang Keselamatan dan Kesehatan Kerja Pada Konstruksi Bangunan
4. PERMENAKER No. : Per 04/MEN/1985 tentang Pesawat Angkat dan Angkut
6. PERMENAKER No.: PER.05/MEN/1996 tentang Sistem Manajemen Keselamatan dan Kesehatan Kerja
7. OHSAS 18001:1999, Occupational Health And Safety Assessment Series
8. OHSAS 18002:2000, Guideline for the implementation of OHSAS 18001:1999
BAB 3
SISTEM MANAJEMEN K3

3.1 Pengembangan Manajemen K3

Secara umum dan singkat, pengembangan sistem manajemen Keselamatan dan Kesehatan Kerja bisa dilihat sebagaimana uraian berikut.

Penerapan terhadap SMK3 ini dibagi menjadi 3 tingkat, yaitu :
 a. Perusahaan kecil atau perusahaan dengan tingkat resiko rendah harus menerapkan sebanyak 64 (enam puluh empat) kriteria
 b. Perusahaan sedang atau perusahaan dengan tingkat resiko menengah harus menerapkan sebanyak 122 (seratus dua puluh dua) kriteria
 c. Perusahaan besar atau perusahaan dengan tingkat resiko tinggi harus menerapkan sebanyak 166 (seratus enam puluh enam) kriteria

Keberhasilan penilaian SMK3 di tempat kerja diukur dengan cara berikut :
- Untuk tingkat pencapaian penerapan 0% - 59% dan pelanggaran peraturan perubahan akan dikenai tindakan hukum
- Untuk tingkat pencapaian penerapan 60%-84% diberikan sertifikat dan bendera perak
- Untuk tingkat pencapaian penerapan 85%-100% diberikan sertifikat dan bendera emas

Sistem ini bisa digunakan untuk semua jenis industri, berupa industri manufaktur, industri jasa konstruksi, industri produksi, dll.

Internasional dengan menggunakan 10 standar K3 di beberapa negara. Sistem ini terdiri dari 4 klausul besar yang terurai kedalam 9 sub klausul.

Standar ini dikembangkan sebagai reaksi atas kebutuhan masyarakat/institusi yang sangat mendesak, sehingga institusi tersebut bisa melaksanakan manajemen K3 dengan standar tertentu, terhadap institusi tersebut bisa dilakukan audit serta mendapatkan sertifikatnya. Demikian juga terhadap auditnya juga akan mempunyai standar panduan dalam melaksanakan kegiatan auditnya.

3. Sistem Manajemen Keselamatan dan Kesehatan Kerja versi COHSMS

(Costruction Industry Occupational Health and Safety Management Systems) adalah sistem manajemen K3 yang dirumuskan oleh Japan Construction Safety and Health Association (JCSHA), yaitu suatu asosiasi perusahaan jasa konstruksi di Jepang. COHSMS merupakan standar K3 khusus ditujukan bagi perusahaan yang bergerak di bidang *jasa konstruksi*. Sistem ini terdiri dari 11 elemen dasar pengelolaan kerja dan 17 elemen dasar bagi kantor. Pembangunan K3 berdasarkan COHSMS dilakukan secara mandiri berdasar keinginan dari perusahaan konstruksi itu sendiri. Pembangunan sistem, pelaksanaan dan penerapan sistem, pengawasan sistem dan review sistem seluruhnya dilakukan dengan memastikan pendapat dari pekerja, sehingga merupakan sistem dengan pelaksanaan mandiri dimana sistem tersebut dilakukan oleh perusahaan konstruksi itu sendiri sebagai tanggung jawab perusahaan konstruksi.

3.2 Elemen Dalam Sistem Manajemen K3

Bila dilihat secara lebih mendalam, ketiga sistem manajemen K3 sebagaimana bab III mempunyai esensi isi sama, yang dimulai dengan perencanaan, dilanjutkan dengan pelaksanaan, pengontrolan dan perbaikan yang berkelanjutan.

1. Lingkup

SMK3 (ketiga sistem yang ada) mengandung persyaratan-persyaratan dalam sistem Keselamatan dan Kesehatan Kerja, sehingga suatu organisasi bisa menggunakankannya untuk mengontrol resiko dan melakukan perbaikan berkesinambungan terhadap prestasi kerjanya.
Spesifikasi dalam SMK3 bisa diterapkan oleh berbagai jenis organisasi dengan tujuan:

a. membangun sistem K3 dalam rangka meminimalisir secara maksimal, bila memungkinkan menghilangkan suatu resiko terhadap karyawan, harta benda, maupun pihak lain terkait dalam rangka pengembangan K3,

b. menerapkan, memelihara dan mewujudkan perbaikan berkesinambungan dalam sistem K3,

c. adanya kontrol dalam hal pelaksanaan K3 terhadap kebijakan organisasi yang telah ditetapkan,

d. mendemonstrasikan kesesuaian antara sistem K3 yang dibangun dengan sistem lain dalam organisasi,

e. menjalani proses sertifikasi dan registrasi dalam bila sistem K3 oleh organisasi eksternal (auditor),

Pengembangan dalam pelaksanaan sistem K3 akan tergantung faktor-faktor tertentu, misalnya kebijakan K3 dalam organisasi, situs aktifitasnya, tingkat resiko yang dihadapi dan tingkat kompleksitas operasional organisasi.

Sebagai contoh diterangkan di atas bahwa, pada dasarnya secara umum ketiga sistem dari SMK3 yang dimaksud, diadakan mengandung 5 prinsip dasar yang sama yang terdiri dari 5 (lima) prinsip dasar (elemen utama) yaitu:

a. kebijakan K3 (KESELAMATAN DAN KESEHATAN KERJA policy)

b. Perencanaan (Planning)

c. Penerapan dan Operasi (Implementation and operation)

d. Pemeriksaan dan tindakan perbaikan (Checking and corrective action)

e. Tinjauan Manajemen (Management review)

f. Perubahan perbaikan Berkelanjutan (Perbaikan berkelanjutan)

5 Prinsip dasar pelaksanaan SMK3 sesuai Permennaker No. 5/MEN/1996 tentang pedoman penerapan Sistem Manajemen Keselamatan dan Kesehatan Kerja (SMK3). Terdiri dari:

a. Penetapan Komitmen dan Kebijakan K3
b. Perencanaan (Pemenuhan Kebijakan, Tujuan dan Sasaran Penerapan K3)
c. Penerapan Rencana K3 secara Efektif dgn Mengembangkan Kemampuan dan Mekanisme Pendukung yang Diperlukan utk Mencapai Kebijakan, Tujuan dan Sasaran K3
d. Pengukuran, Pemantauan, dan Pengevaluasi Kinerja K3
e. Peninjauan Secara Teratur dan Peningkatan Penerapan SMK3 secara berkesinambungan
Sedangkan Pedoman Teknis Pelaksanaan Audit Sistem Manajemen Keselamatan dan Kesehatan Kerja, diberikan dalam 12 elemen audit yang diberikan sebagai berikut:

a. Pembangunan dan Pemeliharaan Komitmen
b. Pendokumentasian Strategi
c. Peninjauan Ulang Perancangan (Desain) dan Kontrak
d. Pengendalian Dokumen
e. Pembelian
f. Keamanan Bekerja Berdasarkan SMK3
g. Standar Pemantauan
h. Pelaporan dan Perbaikan Kekurangan
i. Pengelolaan Material dan Perpindahannya
j. Pengumpulan dan Penggunaan Data
k. Audit internal SMK3
l. Tinjauan Manajemen

Penjabaran ke 5 prinsip pedoman pelaksanaan penerapan SMK3 tersebut diatas akan diberikan sebagai sebagaimana penjelasan berikut ini:

2. Komitmen Dan Kebijakan K3

Dalam suatu organisasi harus dibuat Penetapan Komitmen dan Kebijakan K3, atau secara umum dikenal juga dengan istilah "OH&S Policy" oleh top management secara etis menyatakan tujuan Komitmen dan Kebijakan K3, serta adanya komitmen terhadap perbaikan (perubahan) berkelanjutan (perbaikan berkelanjutan) dalam kinerja K3 L.

Tinjauan Manajemen (Management Review)

```
<table>
<thead>
<tr>
<th>Audit (Pengukuran kinerja /measuring performance)</th>
<th>Umpan Balik (Feedback from Audit)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Komitmen dan Kebijakan</td>
</tr>
<tr>
<td></td>
<td>Perencanaan (Planning)</td>
</tr>
</tbody>
</table>
```
Beberapa hal harus diperhatikan berkaitan dengan kebijakan (policy) organisasi :

a. Sesuai dengan iklim organisasi dan tingkat resiko Keselamatan dan Kesehatan Kerja yang dihadapi organisasi,
b. Mengandung komitmen dalam hal perbaikan berkelanjutan,
c. Mengandung komitmen dalam hal pemenuhan terhadap peraturan perundangan Keselamatan dan Kesehatan Kerja yang berlaku maupun persyaratan-persyaratan lainnya,
d. Didokumentasikan, diterapkan dalam aktifitas organisasi dan dipertahankan,
e. Dikomunikasikan kepada seluruh karyawan secara intensi sehingga seluruh karyawan peduli terhadap kewajiban-kewajibannya dalam hal Keselamatan dan Kesehatan Kerja,
f. Mudah dijangkau oleh pihak-pihak lain (pihak luar organisasi),
g. Dievaluasi secara periodik untuk menjamin bahwa policy organisasi ini masih relevan dan sesuai dengan aktifitas organisasi.

3. Perencanaan K3

Dalam perencanaan K3 haruslah memenuhi "Pemenuhan terhadap Kebijakan" yang ditetapkan yang meliputi Tujuan, Sasaran dan indikator kinerja penerapan K3 dengan mempertimbangkan penelaahan awal sebagai bagian dalam mengidentifikasi potensi sumber bahaya penilaian dan pengendalian resiko atas permasalahan K3 yang ada dalam perusahaan atau di proyek atau tempat kegiatan kerja konstruksi berlangsung.

Dalam mengidentifikasi potensi bahaya yang ada serta tantangan yang dihadapi, akan sangat mempengaruhi dalam menentukan kondisi perencanaan K3 perusahaan.

Untuk hal tersebut haruslah ditentukan oleh Isu Pokok dalam Perusahaan dalam identifikasi bahaya :
- Frekwensi dan tingkat keparahan Keceiakaan Kerja
- Keceiakaan Lalu Lintas
- Kebakaran dan Peledakan
- Keselamatan Produk (Product Safety)
- Keselamatan Kontraktor
- Emisi dan Pencemaran Udara
- Limbah Industri
4. Tujuan dan Sasaran

Berdasar tahap awal ditetapkan target atau tujuan serta sasaran yang akan dicapai dalam bidang K3. Disesuaikan dengan kemampuan perusahaan dan tingkat resiko yang ada.

5. Sasaran Penerapan SMK3, meliputi:
- Sumber Daya Manusia
- Sistem dan Prosedur
- Sarana dan Fasilitas
- Pencapaian perspektif di Lingkungan internal dan eksternal
- Pemberdayaan, pertumbuhan dalam penerapan K3

Organisasi harus menyusun planning KESELAMATAN DAN KESEHATAN KERJA yang meliputi:
a. identifikasi bahaya (hazard identification), penilaian dan pengendalian resiko (risk assessment and risk control) yang dapat diukur
b. penuhi peraturan perundang-undangan dan persyaratan lainnya,
c. penentuan tujuan dan sasaran,
d. program kerja secara khusus dan program kerja secara khusus.
e. Indikator kinerja sebagai dasar penilaian kinerja K3

6. Perencanaan Identifikasi Bahaya, Penilaian, dan Pengendalian Resiko

Organisasi harus menyusun dan memelihara prosedur tentang perencanaan identifikasi bahaya, penilaian resiko dan pengendaliannya, dalam memenuhi kebijakan K3 yang ditetapkan.

Prosedur perencanaan identifikasi bahaya, penilaian resiko dan pengendaliannya harus ditetapkan, dikendalikan dan didokumentasikan

Assessment dan pengendalian resiko ini harus telah dipertimbangkan dalam penetapan target K3.
Beberapa hal perlu diperhatikan dalam menyusun identifikasi bahaya :

a. identifikasi bahaya, penilaian resiko dan pengendaliannya bersifat proaktif, bukan reaktif,
b. buat identifikasi dan klasifikasi resiko kemudian dikontrol dan diminimalisir, dikaitkan dengan objective dan program kerja,
c. konsisten diterapkan,
d. bisa memberi masukan dalam penentuan fasilitas-fasilitas yang diperlukan oleh organisasi, identifikasi pelatihan dan pengembangan kontrol terhadap operasi organisasi,
e. bisa menjadi alat pemantau terhadap tindakan-tindakan yang diperlukan, sehingga terwujud efektifitas dan efisiensi.

Organisasi harus menyusun dan memelihara prosedur tentang identifikasi peraturan perundangan dan persyaratan persyaratan lainnya yang diperlukan dalam kegiatan organisasi.

Organisasi tersebut harus memelihara ketersediaan dokumen-dokumen ini, mensosialisasikan kepada karyawan maupun kepada pi hak luar terkait.

Organisasi harus memastikan dapat mengendalikan tinjauan peraturan dan perundang-undangan, standar / acuan terkini sebagai akibat perubahan kebijakan pemerintah, perubahan keadaan / peralatan / teknologi yang terjadi diluar organisasi.

8. Tujuan dan Sasaran.

Organisasi harus menyusun dan memelihara tujuan dan sasaran K3, bila memungkinkan berupa tujuan dan sasaran K3 yang telah dikuantifisir, pada setiap fungsi dan level dalam organisasi.

Ketika menetapkan maupun meninjau kembali tujuan dan sasaran ini, organisasi harus mempertimbangkan peraturan perundangan dan persyaratan-persyaratan lainnya, bahaya dan resiko, teknologi yang digunakan, kemampuan keuangan, persyaratan dalam pengoperasian organisasi dan pandangan pihak luar terkait.

Dalam menetapkan tujuan dan sasaran sekurang-kurangnya harus memenuhi kualifikasi :

a. Dapat diukur
b. Satuan / indikator pengukuran
c. Sasaran pencapaian
d. Jangka waktu pencapaiannya

Penetapan tujuan dan sasaran kebijakan K3 harus dikonsultasikan dengan wakil tenaga kerja, Ahli K3, dan pihak-pihak yang terkait dengan pelaksanaan pekerjaan. Tujuan dan sasaran ini harus konsisten terhadap kebijakan K3 termasuk kebijakan tentang perbaikan berkelanjutan.

Dalam menetapkan tujuan dan sasaran kebijakan Keselamatan dan Kesehatan Kerja perusahaan harus menggunakan indikator kinerja yang dapat diukur sebagai dasar penilaian kinerja Keselamatan dan Kesehatan Kerja yang sekaligus merupakan informasi mengenai keberhasilan pencapaian sistem manajemen Keselamatan dan Kesehatan Kerja.

Program kerja termasuk penanggung jawab dan otoritas pada fungsi-fungsi dan level dalam organisasi dan target waktu dalam pencapaian tujuan dan sasaran organisasi tersebut.

Program kerja ini harus dievaluasi secara periodik dan terencana, bila diperlukan, bisa diamandemen sehubungan dengan pergeseran aktifitas, hasil produksi, hasil jasa atau kondisi operasi dalam organisasi.

Elemen Program K3

a. Untuk menerapkan dan mengembangkan sistem manajemen Keselamatan dan kesehatan kerja disusun program implementasi atau elemen Keselamatan dan kesehatan kerja, dengan menetapkan system pertanggung jawaban dalam pencapaian tujuan dan sasaran sesuai dengan fungsi dan tujuan dari tingkat manajemen perusahaan yang bersangkutan

b. Elemen Keselamatan dan kesehatan kerja disesuaikan dengan kebutuhan masing-masing perusahaan berdasarkan hasil telah awal dan penetapan
tujuan dan sasaran yang ingin dicapai perusahaan termasuk dalam menetapkan sarana dan jangka waktu untuk pencapaian tujuan dan sasaran tersebut.

11. Penerapan Rencana K3

Secara Efektif dgn Mengembangkan Kemampuan dan Mekanisme Pendukung yg Diperlukan utk Mencapai Kebijakan, Tujuan dan Sasaran Keselamatan dan kesehatan kerja

--- Diagram ---

Perencanaan K3 (Planning)

Audit

Penerapan dan Operasional (Implementation and Operation)

Ungkap, feedback & pengukuran (Feedback From Measuring Performance)

Pemeriksaan dan Tindakan Perbaikan (Checking And Corrective Action)

--- End Diagram ---

3.3 Jaminan Kemampuan

1. Sumber Daya Manusia, Sarana Dan Dana

Organisasi (Perusahaan) harus menyediakan Sumber Daya Manusia (SDM), sarana dan dana yang memadai untuk menjamin pelaksanaan SMK3 sesuai dengan persyaratan system SMK3 yang ditetapkan.

Dalam memenuhi ketentuan diatas, organisasi harus membuat prosedur dan menyediakan biaya, sehingga dapat dipantau ke efektifannya, diantaranya :

a. Sumber daya yang memadai sesuai dengan tingkat keperluannya,

b. Melakukan identifikasi kompetensi kerja termasuk pelaksanaan pelatihan yang dibutuhkan,

c. Membuat ketentuan untuk mengkomunikasikan informasi K3 secara efektif,

d. Membuat ketentuan / peraturan untuk mendapatkan saran-saran dari para ahli,

e. Membuat ketentuan / peraturan untuk pelaksanaan konsultasi dan keterlibatan pekerja.
2. Integrasi
Organisasi menjamin sistem SMK3 yang dilaksanakan dapat terintegrasi dengan sistem manajemen perusahaan secara selaras dan seimbang.

3. Tanggung Jawab dan Tanggung Gugat
a. Organisasi
Organisasi harus menentukan aturan main, kewenangan dan otoritas personil-personil yang mengatur, menjalankan dan memantau aktifitas aktifitas yang berkaitan dengan resiko K3 dalam kaitan dengan aktifitas fisik dan proses dalam organisasi secara keseluruhan. Dokumen-dokumen tersebut harus ditetapkan, didokumentasikan dan dikoordinasikan.

Manajemen organisasi harus menyediakan sumber daya utama, termasuk didalamnya Sumber Daya Manusia, spesialis-spesialis, teknologi maupun keuangan dalam rangka pelaksanaan, kontrol dan perbaikan Manajemen K3.

Organisasi dapat mengembangkan Organisasi K3 yang handal dan berkualitas dalam hal implementasi:
- Pencampuran Job Description K3
- Penerapan Job Safety Analysis

b. Peran Tenaga Ahli
Untuk mengembangkan, menerapkan dan memelihara cara kerja, prosedur, sistem, pengaman dan standar untuk menghilangkan, mengendalikan dan mengurangi bahaya Kecelakaan kerja terhadap manusia, prasarana dan lingkungan, pembinaan SDM K3.

Penanggung jawab K3 dalam manajemen organisasi harus mempunyai aturan main, tanggung jawab dan wewenang dalam rangka:

1) Menjamin bahwa persyaratan-persyaratan dalam Sistem Manajemen K3 dibangun, diterapkan dan dipelihara sesuai dengan spesifikasi dalam OHSAS,

4. Konsultasi, Komunikasi, dan Kesadaran

Organisasi harus mempunyai prosedur yang menjamin bahwa informasi-informasi K3 dikomunikasikan kepada dan dari karyawan maupun pihak lain terkait. Keterlibatan dan konsultasi karyawan harus didokumentasikan dan disampaikan kepada pihak lain yang berkepentingan.

Dalam hal ini pengurus organisasi harus dapat menunjukkan implementasinya dalam pelaksanaan konsultasi, komunikasi dan penyadaran pekerjaan pelaksanaan K3, dengan melibatkan seluruh unsur pekerja dan pihak-pihak lain yang terkait akan pelaksanaan dan penerapan, pemeliharaan dan pengembangan SMK3, untuk hal ini maka, Karyawan harus:

a. Berperan aktif dalam pengembangan dan evaluasi kebijakan dan prosedur berkaitan dengan pengendalian resiko

b. Diberi informasi tentang wewenang karyawan dalam bidang K dan penanggung jawab manajemen dalam bidang K

5. Pelatihan Kompetensi Kerja

Pengurus organisasi harus mempunyai dan menjamin kompetensi kerja dan pelatihan setiap tenaga kerja yang cukup dalam rangka menjalankan tugasnya dalam unit atau kerja yang terkait dengan K3. Kompetensi harus didefinisikan sesuai dengan pendidikan, pelatihan dan pengalaman.

Organisasi harus menetapkan dan memelihara prosedur untuk menjamin karyawan-karyawannya bekerja pada fungsi-fungsi dan level yang relevan, dalam kaitan dengan:

a. menjamin kesesuaian sistem yang dijalankan dengan kebijakan, prosedur dan persyaratan-persyaratan dalam sistem K3,

b. konsekwensi-konsekwensi K3, baik aktual maupun potensial, dalam menjalankan aktivitas kerja, aturan main dan tanggung jawab dalam pencapaian kebijakan K3 dan prosedur

3-12
3.4 Kegiatan Pendukung

1. Komunikasi

Komunikasi dua arah yang efektif dan pelaporan rutin merupakan sumber penting pelaksanaan SMK3, semua kegiatan ini harus didokumentasikan, prosedur yang ada harus dapat menjamin penuh kebutuhan tersebut:
 a. Mengkomunikasikan hasil pelaksanaan SMK3, pemantauan, audit dan tinjauan ulang manajemen kesemua pihak yang mempunyai tanggung jawab dalam kinerja K3,
 b. Melakukan identifikasi dan menerima informasi K3 yang terkait dari luar perusahaan,
 c. Menjamin informasi yang terkait dikomunikasikan kepada orang-orang diluar perusahaan yang membutuhkannya

2. Pelaporan

Sistem pelaporan internal penerapan SMK3 perlu ditetapkan oleh organisasi untuk memastikan bahwa SMK3 dipantau dan, kinerjanya ditingkatkan. Hal tersebut untuk menangani:
 a. Pelaporan identifikasi sumber bahaya,
 b. Pelaporan terjadinya insiden,
 c. Pelaporan keadaan kasar,
 d. Pelaporan keadaan SMK3, dan
 e. Pelaporan lainnya yang dipersyaratkan oleh perusahaan maupun oleh peraturan berlakunya undangan

3. Pendokumentasian

Organisasi harus membuat dan memelihara informasi dalam bentuk cetak (kertas) atau elektronik. Dokumen-dokumen disusun sepraktis mungkin, sehingga bisa mewujudkan efektifitas dan efisiensi dalam bekerja.

4. Pengendalian Dokumen

Organisasi harus membuat dan memelihara prosedur untuk mengontrol seluruh dokumen dan data-data untuk menjamin:
 a. Seluruh dokumen diarsip dengan baik,
 b. Secara periodik dievaluasi, direvisi sesuai kebutuhan dan disetujui, disesuaikan dengan kecukupannya oleh personil yang berkompeten,
 c. Revisi yang berlaku tersedia di semua lokasi yang memerlukannya.
d. Dokumen-dokumen yang tidak terpakai dipisahkan dengan baik dari aktifitas yang sedang berjalan

5. Pencatatan dan Manajemen Informasi

Organisasi harus menyusun dan memelihara prosedur untuk mengidentifikasi, memelihara dan mendesposisi catatan K3, termasuk hasil audit dan evaluasi.

Catatan K3 harus sah, bisa diidentifikasi dan mempunyai kemampuan lelusur sehubungan dengan aktifitas tertentu. Catatan K harus disimpan dan dipelihara dengan cara tertentu, sehingga siap setiap saat untuk didapatkan dan terhindung dari kerosakan atau hilang.

3.5 Identifikasi Sumber Bahaya, Penilaian, Dan Pengendalian Resiko

Identifikasi bahaya sebagaimana ditetapkan dalam bagian Sebelum, harus dinilai tingkat resikonya, yang merupakan tolok ukur mengelahui adanya kemungkinan terjadinya bahaya kecelakaan kerja dan penyakit akibat kerja yang selanjutnya akan dapat dikendalikan tingkat resikonya.

1. Identifikasi Sumber Bahaya

Identifikasi potensi sumber bahaya dilakukan dengan mempertimbangkan:

a. Kondisi atau kejadian yang dapat menimbulkan bahaya

b. Jenis kecelakaan dan penyakit akibat kerja yang mungkin dapat terjadi

2. Penilaian

Penilaian resiko harus dilakukan setelah diketahui identifikasi potensi sumber bahaya. Penilaian resiko didasarkan pada:

a. Tingkat kekerapan (Frekwensi) terjadinya insiden / kecelakaan kerja

b. Tingkat keparahan (Consequences) yang terjadi akibat insiden / kecelakaan kerja

Penilaian resiko ini untuk memastikan dan menentukan adanya prioritas pengendalian resiko insenden, kecelakaan dan penyakit akibat kerja

3. Tindakan Pengendalian

Organisasi harus mengontrol seluruh aktifitas-aktifitas sesuai dengan identifikasi resiko yang telah disusun. Hal ini bisa ditempuh dengan jalan:

a. Penerapan dan pemeliharaan prosedur, sehingga akan bisa melihat adanya deviasi terhadap policy dan tujuan dan sasaran K3,
b. Menyusun kriteria-kriteria operasi dalam prosedur,
c. Penerapan dan pemeliharaan prosedur yang berhubungan dengan resiko material, peralatan kerja dan tenaga kerja dan mengkomunikasikan prosedur-prosedur tersebut kepada pihak terkait lainnya,
d. Penerapan dan pemeliharaan prosedur dalam perencanaan areal kerja, proses, instalasi lainnya.

Pengendalian resiko kecelakaan dan penyakit akibat kerja dilakukan juga melalui metode:

- Pendidikan, peltihan,
- Pembangunan kesadaran dan motivasi dengan pemberian penghargaan dapat berupa insentif / bonus, surat penghargaan dllnya
- Evaluasi terhadap hasil inspeksi, audit, analisis isu dan kecelakaan,
- Penegakan hukum dan peraturan-peraturan K3
- Pengendalian teknis / reykaya yang meliputi: Eliminasi, substiitusi bahaya, isolasi, ventilasi, higien dan sanitasi

Ada suatu contoh siklus aplikasi K3 yang dibuat oleh Japan Construction Safety and Health Association (JOSHA), yaitu dari:

a. Siklus harian K3 (Daily Safety Work Cycle)
b. Siklus mingguan K3 (Weekly Safety Work Cycle)
c. Siklus bulanan K3 (Monthly Safety Work Cycle)

Ketiga siklus K3 (lihat Bab 5) diatas penting sekali untuk secara konsisten dilakukan oleh organisasi proyek, mengingat pelaksanaan proyek konstruksi mempunyai item-item pekerjaan yang berbeda dan dinamis, berganti dari waktu ke waktu. Satu jenis proyek konstruksi juga berbeda dari jenis proyek lainnya, sehingga mempunyai strategi penanganan yang berbeda pula.

4. Perancangan (Design) dan Rekayasa

Pengendalian resiko kecelakaan dan penyakit akibat kerja dalam proses rekayasa harus dimulai sejak tahapan perancangan dan perencanaan.

Setiap tahap dari siklus perancangan meliputi:

a. Pengembangan,
b. Verifikasi tinjauan ulang,
c. Validasi dan penyesuaian yang dikaitkan dengan identifikasi sumber bahaya, prosedur penilaian dan pengendalian resiko kecelakaan dan penyakit akibat kerja.

Pada bagian Perancangan (Design) dan Rekayasa, personel yang menangani harus memiliki kompetensi kerja yang sesuai dan diberikan wewenang serta tanggung jawab yang jelas untuk melakukan validasi persyaratan SMK.

5. Pengendalian Administratif

a. Prosedur dan instruksi kerja yang dibuat harus mempertimbangkan segala aspek K3 pada setiap tahapan,

b. Prosedur dan instruksi kerja yang dibuat harus terdokumentasi,

c. Rancangan, tinjauan ulang Prosedur dan instruksi kerja harus dibuat oleh personel yang mempunyai kompetensi kerja dengan melibatkan pelaksana yang terkait. Dalam hal ini personel yang melaksanakan harus diberikan pelatihan agar memiliki kompetensi yang sesuai dengan bidang pekerjaannya.

d. Prosedur dan instruksi kerja yang dibuat harus ditinjau secara berkala, untuk memastikan bahwa prosedur dan instruksi kerja tersebut terkendali sesuai dengan perubahan keadaan yang terjadi seperti pada peraturan – perundang undangan, peralatan, prasarana atau bahkan bahan baku yang digunakan.

6. Tinjauan Ulang Kontrak

Pengadaan barang dan jasa harus ditinjau ulang untuk memastikan dan menjamin kemampuan organisasi dalam memenuhi persyaratan - persyaratan K3 yang diterapkan.

7. Pembelian

Setiap pembelian barang dan jasa termasuk di dalamnya prosedur pemeliharaan barang dan jasa harus terintegrasi dalam strategi penanganan pencegahan resiko kecelakaan dan penyakit akibat kerja :

a. Dalam sistem pembelian harus jaminan agar produk barang dan jasa serta mitra kerja perusahaan memenuhi persyaratan K3,

b. Pada saat penerimaan barang dan jasa di tempat kerja, organisasi harus dapat menjalankan kepada semua pihak yang akan menggunakan barang dan jasa tersebut mengenai identifikasi bahaya, penilaian dan pengendalian resiko kecelakaan dan penyakit akibat kerja yang dapat terjadi.
8. Prosedur Menghadapi Keadaan Darurat atau Bencana

Organisasi harus membuat dan memelihara perencanaan dan prosedur untuk mengidentifikasi potensial bahaya dalam rangka merespon insiden dan situasi keadaan darurat dan dalam rangka tindakan prefentif dan reduksi terhadap kecelakaan dan sakit akibat kerja.

Dokumen ini harus dievaluasi, terutama setelah mendapatkan insiden dan situasi keadaan darurat. Dokumen ini juga harus dites / di uji secara periodik-berkala, untuk mengetahui kehandalan sistem yang ditetapkan.

Pengujiannya sistem keadaan darurat harus dilakukan oleh orang - orang pelatgas yang mempunyai kompetensi kerja, dan untuk instalasi yang besar harus mendapatkan ijin dari / atau dikoordinasikan dengan instansi yang relevan.

9. Prosedur Menghadapi Insiden

Organisasi harus menyusun dan memelihara prosedur yang menetapkan tanggung jawab dan wewenang dalam hal

a. menangani dan menyelidiki kecelakaan kerja, insiden dan ketidak sesuiana,
b. pengambilan tindakan dalam rangka mereduksi akibat yang timbul oleh kecelakaan, insiden atau ketidak sesuaina,
c. konfirmasi dalam hal elektrikitas dari tindakan korektif dan tindakan prefentif yang telah dilakukan.

Penyediaan fasilitas guna melengkapi prosedur yang ditetapkan meliputi:

a. Penyediaan sarana dan fasilitas P3K yang cukup sesuai dengan tingkat besarnya / organisasi, guna menyakinkan dapat melaksanakan pertolongan medik dalam keadaan darurat,
b. Proses perawatan lanjutan setelah insiden / kecelakaan

Prosedur ini juga mengandung hal-hal dimana tindakan korektif dan tindakan prefentif harus dievaluasi dengan menggunakan proses penilaian resiko sebelum diimplementasikan

10. Prosedur Rencana Pemulihan Keadaan darurat

Organisasi harus menyusun dan memelihara prosedur yang menetapkan tanggung jawab dalam hal Pemulihan Keadaan darurat, yang secara cepat dapat menangani dan mengembalikan pada kondisi normal dan membantu pemulihan tenaga kerja yang mengalami trauma.
3.6 Penerapan Rencana K3

1. Inspeksi dan Pengujian

Organisasi harus menetapkan inspeksi, pengujian dan pemantauan berkaitan dengan tujuan dan sasaran K3 yang ditetapkan, frekwensi inspeksi, pengujian dan pemantauan harus disesuaikan dengan obyeknya. Prosedur inspeksi, pengujian dan pemantauan meliputi:

a. Personel yang terlibat mempunyai kompetensi dan pengalaman yang cukup;

b. Catatan, rekaman hasil inspeksi, pengujian, dan pemantauan dipelihara dan tersedia dengan baik bagi tenaga kerja, kontaktor, yang terkait dan manajemen,

c. Penggunaan peralatan dan metode pengujian di jamin memenuhi standar keselamatan

d. Tindakan perbaikan segera dilakukan atas keadaan sesuain yang ditemukan saat inspeksi, pengujian dan pemantauan,

e. Penyelidikan yang memadai harus dilakukan untuk menemukan permasalahan suatu insiden

f. Hasil temuan harus dipelajari dan ditinjau ulang.

2. Audit dan Sistem Manajemen K3

Organisasi harus menyusun dan memelihara prosedur audit dan program audit dalam rangka audit sistem manajemen K3, agar:

a. mendapatkan kesesuaian dengan sistem manajemen K3:

 1) kesesuaian dengan perencanaan manajemen K3 termasuk spesifikasinya,
 2) telah diterapkan dan dipelihara dengan benar,
 3) kesesuaian dengan kebijakan dan target dengan efektif

b. evaluasi terhadap hasil audit sebelumnya,

c. menyediakan informasi tentang hasil audit kepada manajemen organisasi

Program audit lengkap dengan jadwalnya yang dilaksanakan secara berkala, harus didasarkan pada hasil dari penilaian resiko dari aktifitas organisasi dan hasil dari audit sebelumnya.

Pelaksanaan audit dilaksanakan secara sistmatik terhadap pekerjaan yang menjadi obyek audit oleh personil independen yang mempunyai kompetensi kerja audit, dengan tujuan untuk mengetahui keefektifan sistem manajemen keselamatan dan kesehatan kerja yang diterapkan.
Prosedur audit mencakup lingkup, frekwensi, metodologi, kompetensi, wewenang dan persyaratan-persyaratan untuk melakukan audit dan pelaporan hasil.

Frekwensi audit harus ditentukan atas hasil tinjauan ulang audit sebelumnya oleh manajemen, rekaman hasil audit ini harus disebarkan luaskan ke unit-unit yang terkait dengan observasi audit. Hal ini guna memastikan agar tidak akan terjadi ketidaksesuaian yang sama pada unit-unit lain yang belum dilaksanakan audit, dimana hasil audit sebelumnya menjadi acuan tindakan perbaikan dan peningkatan pelaksanaan K3 yang berkelanjutan.

3. Tindakan Pemeriksaan, Perbaikan dan Penerapannya

Penerapan dan Operasional (Implementation And Operation)

Audit

Checking And Corrective Action

Umpan balik dan pengukuran kinerja (Feedback From Measuring Performance)

Tinjauan Manajemen (Management review)

4. Pengukuran, Pemantauan, dan Pengevaluasian Kinerja K3

Organisasi harus membuat dan memelihara prosedur untuk memantau dan mengukur kinerja K secara teratur. Prosedur ini mengandung:

a. ukuran yang bersifat kualitatif dan kuantitatif sesuai dengan kebutuhan organisasi,

b. pemantauan terhadap peningkatan tujuan dan sasaran K organisasi,

c. secara proaktif melakukan pengukuran terhadap kinerja pemenuhan program manajemen,

d. secara reaktif melakukan pengukuran kinerja kecelakaan kerja, sakit akibat kerja, insiden (termasuk near-miss) dan bukti-bukti historis K,

e. pencatatan data dan hasil pemantauan dan pengukuran kinerja dalam upaya analisa upaya korektif dan analisa upaya prefentif.
3.7 Tinjauan Ulang Dan Peningkatan Oleh Pihak Manajemen

Tinjauan Manajemen harus dilakukan Peninjauannya Secara Teratur untuk Peningkatan Penerapan SMK3 secara Berkelanjutan (Continual Improvement), hal ini harus dapat dipastikan dilakukan dan didokumentasikan serta mudah ditelusur bila diperlukan untuk kepentingan pengembangan SMK3.

Pemeriksaan dan Tindakan perbaikan (Checking And Corrective Action)

\[
\text{Internal Factors (Faktor Internal)} \quad \rightarrow \quad \text{Tinjauan Manajemen (Management Review)} \quad \rightarrow \quad \text{Kebijakan (Policy)}
\]

(Faktor Eksternal)

Pimpinan Puncak manajemen dalam organisasi harus mengevaluasi manajemen sistem K3 secara periodik sesuai yang telah ditentukan, untuk menjamin kecocokan, kesesuaian dan etika jalannya.

Dalam proses evaluasi ini harus tersedia informasi yang memadai sehingga manajemen organisasi bisa melakukan evaluasi dengan tepat. Hasil evaluasi harus didokumentasikan.

Tinjauan manajemen ditujukan untuk memungkinkan dilakukan perubahan policy tujuan dan sasaran dan hal-hal lain dalam sistem K3 dalam kerangka hasil audit sistem K3 dan perbaikan berkelanjutan.
BAB 4
PROSEDUR PEMERIKSAAN DAN PENGENDALIAN

4.1 Pengertian

Prosedur pemeriksaan dan pengendalian disini maksudnya adalah suatu tata cara yang mengatur bagaimana melaksanakan pemeriksaan atas pelaksanaan penerapan K3, adakah terdapat kesesuaian dengan standar yang telah ditetapkan, dan bilamana terdapat ketidaksesuaian atau penyimpangan dalam pelaksanaan tentunya harus dilaksanakan perbaikan menuju ke standar yang telah ditetapkan, atau melakukan pencegahan pada suatu kondisi yang akan mengarah terjadinya insiden / kecelakaan kerja, hal-hal yang menyengat perbaikan dan pencegahan inilah yang dinamakan dengan pengendalian.

Prosedur pemeriksaan dan pengendalian tersebut perlu ditetapkan dengan tujuan untuk tetap mempertahankan pelaksanaan K3 secara konsisten terus-menerus, bahkan bilamana dianggap perlu, dapat ditindak lanjuti dengan pengembangannya guna mempertinggi hasil-hasil yang hendak dicapai.

4.2 Prosedur Pemeriksaan Dan Analisis Perbaikan

Prosedur pemeriksaan dan pengendalian jika di teliti dapat dibagi dalam pembagian sebagai berikut:

1. Prosedur Pemeriksaan

Prosedur pemeriksaan dapat berupa inspeksi dan audit yang bersifat internal, pemeriksaan harus dilakukan oleh petugas yang mempunyai kompetensi di bidang K3, khususnya K3 dibidang pekerjaan konstruksi.

Pemeriksaan yang bersifat inspeksi dapat dilaksanakan secara harian (Daily), mingguan (Weekly), bulanan (Monthly), yang harus dijalankan secara tetap dan kontinyu untuk mempertahankan hasil yang telah dicapai.

Pemeriksaan yang bersifat audit tentunya dilaksanakan secara berkala tiap 2 (tiga) bulan sekali atau 6 (enam) bulan sekali, ketentuan ini berlaku mengikuti standar / ketentuan audit yang diberlakukan pada umumnya oleh badan internal organisasi dan / atau badan auditor.

Pemeriksaan dilaksanakan oleh petugas yang mempunyai kompetensi di bidang kerjanya dan mendapat pengesahan serta verifikasi oleh petugas yang
dan pelepasan / pembongkaran kembali, Pengelolaan alat kerja dan Peralatan Konstruksi, pelaksanaan pengetesan / pengujian ini didasarkan pada proses dan hasil kerja

4.3 Prosedur Pengendalian

Pengendalian disini maksudnya adalah memantau dan mengukur pencapaian kinerja K3, yang meliputi proses K3 didasarkan dengan adanya:

♦ Kinerja masing-masing proses kegiatan dan
♦ Sasaran

Pengukuran (Evaluasi) dan peningkatan Kinerja K3 Pengukuran adalah pengukuran kinerja dilakukan didasarkan pada ketentuan yang telah ditetapkan sebelumnya berupa parameter kinerja, cara penilaian dan pengukurannya. Misalnya mengukur:

1. Tingkat pemahaman pengetahuan dan partisipasi pekerja dalam kegiatan K3, termasuk partisipasi pengunjung / tamu / Sub Kontraktor / Vendor / Mitra Kerja dll yang terkait pelaksanaan kerja konstruksi dilapangan
2. Statistik angka insiden / kecelakaan, tingkat keparahan dan frekwensi insiden ataupun kecelakaan
3. Jumlah jam kerja hilang

4.4 Siklus Penanganan K3

4.4.1 Siklus Harian (D)

Siklus Harian K3 (Daily Safety Work Cycle) adalah suatu siklus aktivitas safety yang mempunyai periode ulang setiap hari. Aktivitas ini sebaiknya dilakukan oleh kelompok-kelompok kecil pekerja yang menangani pekerjaan sejenis, dipimpin langsung oleh kepala grup kerja.
Secara mudah Daily Safety Work Cycle diuraikan sebagaimana Tabel pada Lampiran - 1.

4.4.2 Siklus Mingguan K3

Siklus Mingguan K3 (Weekly Safety Work Cycle) dilakukan periodik mingguan, biasanya pada akhir minggu. Hal ini penting dilakukan untuk tujuan:

1. Evaluasi oleh manajemen proyek terhadap grup-grup kerja
2. Penyampaian informasi-informasi dari manajemen proyek kepada grup-grup kerja
3. Adanya interaksi satu grup kerja dengan grup kerja lainnya, sehingga akan terjadi tukar menukar peng alaman yang diperoleh suatu grup kerja selama satu minggu berjalan,

Secara mudah Weekly Safety Work Cycle diuraikan sebagaimana Tabel pada Lampiran - 2.a.
4.4.3 Siklus Bulanan K3

Siklus Bulanan K3 (Monthly safety work cycle) dilakukan periodik bulanan, biasanya pada akhir bulan. Hal ini perlu dilakukan untuk tujuan:

1. Penyampaian informasi-informasi dari manajemen proyek kepada personil kunci proyek,

2. Evaluasi oleh manajemen proyek terhadap pelaksanaan proyek selama satu bulan,

3. Penentuan program-program kerja yang bersifat strategis.

Lampiran -1
Siklus Harian K3 (DAILY SAFETY WORK CYCLE)

<table>
<thead>
<tr>
<th>NO.</th>
<th>URAIAN</th>
<th>WAKTU PELAKSANAAN</th>
<th>KETERLIBATAN</th>
<th>TEMPAT DILAKSANAKAN</th>
<th>MATERI</th>
</tr>
</thead>
</table>
| I | 10 Minutes safety Talk Meeting | a. Setiap hari kerja
b. 08.00 – 08.10 = 10 menit | a. Semua pekerja
b. Pekerja kontraktor utama dan sub kontraktor
b. Kegiatan pelatihan
c. Pemeriksaan kehadiran
e. Bukti kegiatan: daftar hadir, risalah, dll |
| II | Inspection Prior to Start of Work | a. Setiap hari kerja
b. 08.10 – 08.25 = 15 menit
c. Sebelum menggunakan peralatan | a. Setiap grup kerja
b. Pekerja kontraktor utama dan sub kontraktor
c. Dipimpin oleh: Pemimpin Grup Kerja | a. Tempat pelaksanaan kerja
b. Diajaran
c. Ditemukan
d. Tekanan
| | | | | | a. Pemeriksaan kehadiran alat
b. Bukti kegiatan: daftar hadir, risalah, dll |
| III | Patrol, Guidance and Supervision | a. Setiap hari kerja
b. 08.25 – 16.40 = 17 menit | a. Safety supervisor | a. Selutuh area proyek | a. Pemeriksaan pelaksanaan pekerjaan
b. Bukti kegiatan: daftar hadir, risalah, dll |
| IV | Site Check | a. Setiap hari kerja
b. 16.40 – 16.55 = 15 menit | a. Setiap grup kerja
b. Pekerja kontraktor utama dan sub kontraktor
dari kotoran
b. Bukti kegiatan: daftar hadir, risalah, dll |
| V | Final Check | a. Setiap hari kerja
b. 16.55 – 17.00 = 15 menit | a. Kepala grup kerja
b. Pekerja kontraktor utama dan sub kontraktor | a. Tempat kerja | a. Pemeriksaan hasil site Clean Up
b. Bukti kegiatan: daftar hadir, risalah, dll |
Lampiran 2.a.
Siklus Mingguan K3 (WEEKLY SAFETY WORK CYCLE)

<table>
<thead>
<tr>
<th>NO</th>
<th>URAIAN</th>
<th>WAKTU PELAKSANAAN</th>
<th>KETERLIBATAN</th>
<th>TEMPAT DILAKSANA KAN</th>
<th>MATERI</th>
</tr>
</thead>
</table>
| 1 | Weekly Meeting | a. Setiap hari Sabtu
b. 10.30 – 11.30 = 60 menit | a. Kontraktor utama
a.1. Site manager
a.2. Supervisor
a.3. Safety supervisor
b. Kontraktor utama
b.1. Foreman
c. Diimposi oleh: Site Manager | Di kantor kontraktor utama | a. Pemantauan kebersihan, 30 menit sebelum meeting
b. Meeting:
c. Evaluasi
d. Penyusunan daily meeting
e. Diimposi daily meeting
f. Informasi lainnya
g. Bukti kegiatan: daftar hadir, risalah, dll |

Lampiran 2.b.
Siklus Bulanan K3 (MONTHLY SAFETY WORK CYCLE)

<table>
<thead>
<tr>
<th>NO</th>
<th>URAIAN</th>
<th>WAKTU PELAKSANAAN</th>
<th>KETERLIBATAN</th>
<th>TEMPAT DILAKSANA KAN</th>
<th>MATERI</th>
</tr>
</thead>
</table>
| 1 | Monthly Meeting | a. Setiap hari Sabtu pada minggu terakhir
b. 13.00 – 15.00 = 120 menit | a. Kontraktor utama
a.1. Project manager
a.2. Safety koordinator
a.3. Construction manager
a.4. Site manager
a.5. Safety supervisor
b. Diimposi oleh: Project Manager | Di kantor kontraktor utama | a. Evaluasi pelaksanaan weekly meeting
b. Kompiling data daily meeting dan weekly meeting
c. Penyusunan laporan kepada P2K3
d. Informasi lainnya
e. Bukti kegiatan: daftar hadir, risalah, dll |
BAB 5
ADMINISTRASI DAN PELAPORAN K3

5.1 Administrasi K3

Pekerjaan administrasi K3 terdiri dari 2 (dua) kelompok, yaitu Administrasi Internal dan Administrasi Eksternal. Administrasi Internal adalah Administrasi yang digunakan oleh organ-organ perusahaan dalam mengatur interaksi antar organ dalam perusahaan, sedangkan Administrasi Eksternal adalah Administrasi yang mengatur hubungan perusahaan dengan pihak luar terkait. Kedua jenis administrasi tersebut merupakan dua hal yang saling terkait dengan erat.

1. Internal

Terdapat manfaat utama dari administrasi / dokumenisasi Sistem Manajemen K3, antara lain:

b. Bukti dari kesesuaian kehadap persyaratan-persyaratan, bahwa hal-hal yang direncanakan telah secara aktual dilaksanakan.

c. Sumber pengetahuan, agar menyebabluaskan dan memelihara pengalaman perusahaan.

Contoh: Spesifikasi Teknik dan Gambar Teknik yang terdokumentasi dengan baik, akan dapat digunakan sebagai landasan untuk design dan pengembangan inovasi baru.

Dokumentasi dalam sistem K3, sebaiknya mencakup:

a. Pernyataan kebijakan K3 perusahaan
b. Manual K3
c. Prosedur-prosedur K3
d. Dokumen-dokumen lainnya, misalnya:

1) Peta proses, diagram alir proses dan / atau deskripsi proses
2) Struktur organisasi
3) Spesifikasi-spesifikasi yang merupakan dokumen yang menyatakan persyaratan-persyaratan
4) Hasil pengujian
5) Hasil komunikasi internal
6) Jadwal produksi
e. Catatan-catatan, berupa:
 1) Hasil peninjauan ulang
 2) Hasil pendidikan, pelatihan, keterampilan dan pengalaman kompetensi personil
 3) Hasil audit dan tindak lanjutnya, internal maupun eksternal
 4) Hasil-hasil dari tindakan korektif
 5) Hasil-hasil dari tindakan pencegahan
 6) Risalah rapat dan laporan-laporan

2. Eksternal

Dalam membangun Manajemen K3, suatu perusahaan akan berinteraksi dengan pihak-pihak luar perusahaan. Untuk mendukung aktifitas ini, perusahaan diharuskan menggunakan administrasi yang sistematis, sehingga kegiatan di lapangan bisa dijalankan dengan lancar dan mempunyai kemampuan telusur yang memadai.

Pihak-pihak luar yang harus dihubungi oleh suatu perusahaan, bila perusahaan tersebut memerlukan pengerjaan konstruksi di suatu tempat tertentu adalah:

a. Dinas Tenaga Kerja Kantor Wilayah.

Keberadaan Kantor Wilayah Dinas Tenaga Kerja ini berada di tingkat Propinsi, dalam kaitan ini keterkaitan kerja bipartit antara pusat perusahaan dan Kantor Wilayah Dinas Tenaga Kerja harus selalu dijalin pembinaan dan pengawasan berjalan K3, semua ini bertujuan untuk membangun Manajemen K3 sebagaimana yang diharapkan oleh undang-undang.

Sebagai tindak lanjut pembinaan agar pelaksanaan K3 berjalan dengan baik diperlukan pengawasan yang baik dan terpadu.
Pada kondisi ini sistem administrasi yang harus selalu dapat dipantau ke efektifannya, dan dilaporkan secara rutin semua kegiatan penyelenggaraan kegiatan K3 kepada DINAS TENAGA KERJA KANTOR WILAYAH oleh pusat perusahaan. Pelaporan yang dilaksanakan setiap periode tertentu (liap tiga bulan).
Laporan ini berisi tentang data perusahaan secara umum, keberadaan dan kegiatan P2K3 di perusahaan. Dengan cara ini, maka instansi pemerintah terkait mempunyai data tentang K3 yang ada di wilayah kerjanya, serta dapat memantau semua aktifitas K3.
Bentuk-bentuk pelaporan diberikan contoh pada bagian 5.2. Pelaporan K3, berikutnya.

b. Suku Dinas Tenaga Kerja (Sudinnaker) / setempat

c. Astek

Sesuai dengan ketentuan pemerintah, suatu perusahaan atau proyek yang mempekerjakan tenaga kerja lebih dari 10 orang wajib melindungi tenaga kerjanya melalui suatu Program Asuransi Tenaga Kerja (ASTEK). Sebagai bukti dari pelaksanaannya adalah diterimanya polis asuransi berikut kwitansi pembayaran preminya.

d. Asuransi Lam

Ada proyek-proyek tertentu, didalam dokumen kontraknya mewajibkan kontraktor untuk membayar polis asuransi Construction All Risk (CAR) atau Personal Accident (PA). Yang dimaksud dengan CAR adalah ditujukan untuk bangunan / fisik proyek dan peralatan kerjanya, sedangkan PA ditujukan pada petugas / orang yang melaksanakan pekerjaan.
Kadang-kadang PA juga ditujukan kepada petugas dari Manajemen Konstruksi (MK). Sebagai bukti dari pelaksanaannya adalah diterimanya polis asuransi berikut kwitansi pembayaran preminya.

e. Kimprawil

Untuk proyek-proyek tertentu, seperti proyek-proyek sipil perlu mendatangkan alat-alat berat. Apabila kondisi jalan dan keadaan jembatan yang akan dilalui oleh transportasi alat berat tersebut relatif kecil, maka diperlukan ijin dari
pemerintah setempat, dalam hal ini instansi yang berwenang adalah DINAS KIMPRASWIL setempat. Dinas ini adalah instansi yang paling mengetahui spesifikasi teknis jalan dan jembatan yang berada di wilayah kerjanya.

f. Laik Pakai

Hal ini ditujukan terhadap pesawat angkat dan pesawat angkut meliputi perencanaan, pembuatan, pemasangan, peredaran, pemakaian, perubahan dan atau perbaikan teknisnya seperti pemeliharaan. Keterangan laik pakai untuk pesawat angkat dan pesawat angkut memerlukan keterangannya dari DEPNAKER. Sebagai bukti pelaksanaannya adalah adanya surat keterangan laik pakai dari instansi berwenang (DEPNAKER).

g. Surat Ijin Operasi (SIO) dan Sertifikat Keterampilan Kerja

Hal ini ditujukan terhadap operator pesawat angkat, pesawat angkut dan peralatan konstruksi lainnya. SIO atau Sertifikat Keterampilan untuk operator pesawat angkat, pesawat angkut dan peralatan konstruksi lainnya memerlukan pengesahan atas dari DEPNAKER atau institusi yang diberi kewenangan untuk menerbitkan SIO atau Sertifikat Keterampilan tersebut.

h. Pemerintah / Lingkungan setempat

Pemerintah setempat (MUSPIDA) yang dimaksud, terdiri dari unsur Departemen Dalam Negeri (Lurah, Camat, Bupati, Walikota), Kepolisian (Polsek, Polwil, Polda) dan TNI (Babinsa, Koramil, Kodim). Ketiga unsur diatas adalah instansi instansi aparat negara yang mengendalikan mekanisme pemerintahan dan keamanan / ketertiban umum.

Pemerintah / lingkungan setempat harus diberi laporan tentang keberadaan / adanya kegiatan proyek, karena akan menyangkut banyak tenaga kerja yang umumnya para pendatang, banyaknya kendaraan keluar / masuk membawa material, adanya kegiatan-kegiatan di luar kegiatan rutin yang terkadang dapat mengganggu kelancaran / ketenangan kegiatan rutin yang sudah ada.

Sebagai bukti pelaksanaannya adalah adanya surat pemberitahuan ke pemerintah lingkungan setempat dan sudah ada konfirmasinya.

5.2 Pelaporan K3

Sebagaimana dijelaskan pada bagian 5.1.2.a dan 5.1.2.b Pelaporan K3 baik ke tingkat SUKU DINAS TENAGA KERJA setempat, maupun ke DINAS TENAGA KERJA KANTOR WILAYAH dilakukan secara berkala dan rutin dengan
menggunakan sarana formulir yang telah disiapkan, pelaporan penyelenggaraan kegiatan K3 ini harus disahkan oleh pengawas ketenagakerjaan bidang K3 Konstruksi di SUKU DINAS TENAGA KERJA setempat, atau DINAS TENAGA KERJA KANTOR WILAYAH.

Khusus bagi daerah-daerah yang tidak memiliki pengawas dari SUKU DINAS TENAGA KERJA setempat, atau DINAS TENAGA KERJA KANTOR WILAYAH maka pengesahan laporan untuk sementara dapat dilakukan oleh Ahli K3 Konstruksi yang berada di perusahaan dimana kegiatan K3 sedang dijalankan.

Untuk perusahaan yang mempunyai proyek-proyek dengan subkontraktor kelas menengah / kecil, maka Kegiatan pelaporan ini dapat dilakukan secara berjenjang melalui sub kontraktornya, dan harus mendapat pengesahan Ahli K3 Konstruksi yang berada di kontraktor induk, dimana kegiatan K3 sedang dijalankan, dengan catatan tanggung jawab kegiatan K3 di tempat berlangsungnya kegiatan konstruksi secara keseluruhan menjadi tanggung jawab kontraktor induknya (Main Contractor), bentuk-bentuk pelaporan dibakukan sebagai berikut ini.
LAMPIRAN : BENTUK LAPORAN ADMINISTRASI K3 KONSTRUKSI

DAFTAR ISI

K3

PEMAMUAN DAN PEMERIKSAAN

PROYEK KEGIATAN

KONSTRUKSI BANGUNAN

MEMBANGUN

MANUSIA KARYA

Nama Projek :
Lokasi :
Kodya/Kabupaten :
Propinsi :

PUSLAUBAKONS
DATA PROYEK

1. Nama Proyek

2. Lokasi

3. Pemberi Tugas

4. Perencana Konstruksi

5. Pengawas Konstruksi

6. Pelaksana Konstruksi

7. Luas Lahan

8. Luas Bangunan

9. Subkontraktor
 (dapat ditambah pada lembar tersendiri)

10. Mulai Pekerjaan

11. Jumlah Tenaga Kerja
 a. Tetap : WNA Orang
 : WNI Orang
 b. Borongan/harian lepas :

12. Selesai Pekerjaan

13. Wajib Lapor Per 01/08: ada/tidak ada
 Dibuat oleh:
CHEKLIST UNTUK PENGAWASAN
TEMPAT KERJA KEGIATAN KONSTRUKSI BANGUNAN

<table>
<thead>
<tr>
<th>No.</th>
<th>ITEM YANG DIPERIKSA/DIAMATI</th>
<th>YA</th>
<th>TIDAK</th>
<th>KETERANGAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A. Umum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apakah kontraktor telah melapor kepada Depnaker sesuai pasal 2 Per 01/Menh/89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Apakah kontraktor telah memiliki Wajib Lapor sesuai UU No.7/1985</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Apakah semua pekerja harian lepas dan atau borongan dan subkon telah mendapt Perlindungan Jamosostek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Apakah kontraktor/subkon mempunyai ijin penyempangan waktu kerja</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Apakah memiliki Poliklinik dilokasi proyek, bila ada beberapa petugas kesehatan yang aktif</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Apakah Proyek mempunyai petugas K3/Construction Safety Officer yang telah bersetifikat</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Apakah Proyek memiliki organisasi K3 (Unit K3/P2K3) atau Safety Comittee

8. Apakah Safety Officer atau Safety Comittee memiliki program K3 untuk pelaksanaan proyek

9. Apakah Safety Officer atau Safety Comittee memiliki kegiatan-kegiatan antara lain:
 a. Safety talk
 b. Rapat-rapat K3
 - Harian
 - Mingguan
 - Bulanan
 c. Prosedur kerja setiap tahapan pekerjaan
 d. Supervisi dan inspeksi
 e. Tersedia checkli$t safety patrol
 f. Petugas piken
 g. Kegiatan kampanye K3: lomba kebersihan, disiplin dll
 h. Tindakan sanksi

10. Apakah cukup disiapkan alat-alat perlengkapan dan alat pelindung diri (PPE) serta jumlahnya:
 a. Helm
 b. Sepatu kerja
 c. Tali Pengaman
 d. Masker las
 e. Penuup mulut
 f. Sarung tangan
 g. Pakaian kerja
 h. Kaca mata las
 i. Jaring pengaman
 j. Terali pengaman
11. Apakah ada dipasang rambu-rambu dan poster:
 a. Papan pengumuman untuk tata tertib
 b. Poster-poster K3
 c. Rambu-rambu atau papan-papan peringatan seperti tanda: awas bahaya, tanda bahan mudah terbakar
 d. Tanda Kode petunjuk arah
 - MCK
 - Tandu
 - Mushola
 - Kantin
 - Bak sampah induk
 - Kotak P3K
 - Tempat istirahat
 - Air minum
 - Klinik
 - Ruang Safety Comitte

12. Adakah kesiapan kontraktor dalam pencegahan dan penanggulangan bila terjadi kebakaran dan sarana penanggulangan kebakaran antara lain APAR apabila sudah dipasang pada tempat di mana yang rawan kebakaran?

B. Tempat Kerja dan Tata Ruang

1. Apakah lokasi/ tempat kerja kegiatan konstruksi telah dilengkapi dengan pagar pengaman dengan keadaan baik?

2. Lokasi proyek konstruksi:
 - Luas tanah : m²
 - Bangunan : m²
 - Jumlah lantai : lantai
 - Jumlah basement : lantai
<table>
<thead>
<tr>
<th>No</th>
<th>Pertanyaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Apakah penempatan peralatan dan bahan cukup teratur</td>
</tr>
<tr>
<td>4</td>
<td>Apakah keadaan lingkungan kerja cukup baik/rapat:</td>
</tr>
<tr>
<td></td>
<td>a. Penerangan</td>
</tr>
<tr>
<td></td>
<td>b. Ventilasi</td>
</tr>
<tr>
<td></td>
<td>c. Kebersihan</td>
</tr>
<tr>
<td>5</td>
<td>Apakah semua struktur bangunan dan peralatan kerja, mesin-mesin, pesawat dan peralatan kerja telah mendapat ijin pemakaian dari Depnaker:</td>
</tr>
<tr>
<td></td>
<td>a. Motor diesel genset</td>
</tr>
<tr>
<td></td>
<td>b. Tower Crane</td>
</tr>
<tr>
<td></td>
<td>c. Mobil Crane</td>
</tr>
<tr>
<td></td>
<td>d. Fork lift</td>
</tr>
<tr>
<td></td>
<td>e. Passangerhoist</td>
</tr>
<tr>
<td></td>
<td>f. dll</td>
</tr>
<tr>
<td>6</td>
<td>Apakah operator-operator alat-alat/pesawat angkat telah memiliki sertifikat atau S1Q sesuai Per.01/Men/1989:</td>
</tr>
<tr>
<td></td>
<td>a. Jumlah : orang</td>
</tr>
<tr>
<td></td>
<td>b. Nama : Klas.</td>
</tr>
<tr>
<td></td>
<td>Nama : Klas.</td>
</tr>
<tr>
<td>7</td>
<td>Lain-lain</td>
</tr>
<tr>
<td>8</td>
<td>Diperiksa pada tanggal:</td>
</tr>
</tbody>
</table>

Diterima oleh: ..

Pihak kontraktor: ..

Diperiksa tgl: ..

Diperiksa Oleh: ..
DEPARTEMEN TENAGA KERJA R.I.
DIRETORAT JENDERAL PEMBINAAN HUBUNGAN INDUSTRIAL
DAN PENGAWASAN KETENAGAKERJAAN
Jl. Jend. Gatot Subroto Kav. No. 51 - JAKARTA
Kotak Pos 4872 Jak. 12048 Telp. 5255733 Fes. 600 - Fax (021) 5253913

<table>
<thead>
<tr>
<th>Laporan No.</th>
<th>Form : KONT - 001</th>
</tr>
</thead>
</table>

WAJIB LAPOR
PEKERJAAN/PROYEK KONSTRUKSI BANGUNAN

1. Nama Proyek bangunan
2. Lokasi Proyek
3. Jenis Proyek
4. Pelaksana Konstruksi/Kontraktor Utama (Main Kontraktor)
 - Nama Pemimpin Proyek
 - Jabatan
 - Alamat Kantor
 - Wajib Lapor Ketenagakerjaan
 - Perlindungan Kamsosrek
 - S I U J K
5. Pembuat/Desain/Engineering
 - Alamat
6. Pengawas Konstruksi (Konsultan Pengawas)
 - Alamat Kantor
 - Pimpinan/penanggung jawab
7. Bagian pekerjaan/proyek yang dikerjakan oleh Subkontraktor
 (Data lengkap dapat diuraikan dalam lembar tersendiri)

<table>
<thead>
<tr>
<th>Jenis Pekerjaan</th>
<th>Sub Kontraktor</th>
<th>Nama Sub Kontraktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Persiapan dan pondasi</td>
<td>Ya/Tidak</td>
<td></td>
</tr>
<tr>
<td>7.2 Gedung/Strukture</td>
<td>Ya/Tidak</td>
<td></td>
</tr>
<tr>
<td>7.3 Mekanikal dan Elektrikal (M&E), meliputi:</td>
<td>Ya/Tidak</td>
<td></td>
</tr>
<tr>
<td>- Power Plant/genset</td>
<td>Ya/Tidak</td>
<td></td>
</tr>
<tr>
<td>- Instalasi pipa air (plumbing)</td>
<td>Ya/Tidak</td>
<td></td>
</tr>
</tbody>
</table>

5-12
7.4 Pekerjaan Finishing

8 Jumlah pekerja yang akan diprojeckakan selama pekerjaan konstruksi/proyek berlangsung (Data lengkap dapat diuraikan dalam lembar tersendiri)

|---------------------------|-----|-----|-----|---|-----|---|-----|

9 Lama Proyek: Tahun ()

10 Pekerjaan proyek dimulai pada:

11 Tahapan Pekerjaan/Schedule Waktu Pelaksanaan

- Persiapan dan pondasi
- Gedung/Structure
- Instalasi Listrik
- Gedung/Structure
- Mekanikal dan elektrikal (M & E)
- Power paint/genset
- Instalasi pipa air (plumbing)
- Instalasi lift
- Instalasi tata udara
- Instalasi proteksi kebakaran
- Instalasi penyalur peti
- Sipil
- Finishing
- Hand out/penerimaan

12 Fasilitas alat, pesawat, mesin dan perlengkapan kerja yang tersedia atau dipergunakan dalam pekerjaan konstruksi/proyek (Data lengkap dapat diuraikan dalam lembar tersendiri)

<table>
<thead>
<tr>
<th>Jenis Alat/Perlengkapan</th>
<th>Jumlah</th>
<th>Sertifikat Nomor</th>
<th>Kondisi</th>
</tr>
</thead>
</table>
- Kantor Proyek
- Pembangkit tata udara/ventilasi
- Instalasi Penerangan
- Mobil Crane
- Tower Crane
- Hoisting Lift
- Mesin Pancang/alat pneumatic
- Power Shovel/Excavator
- Perancah
<table>
<thead>
<tr>
<th>13</th>
<th>Bahan-bahan berbahaya yang terdapat pada lingkungan tempat kerja/proyek</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Fasilitas Kesehatan dan Keselamatan Kerja yang tersedia:</td>
</tr>
<tr>
<td></td>
<td>Jenis Fasilitas K3</td>
</tr>
<tr>
<td></td>
<td>Safety helmet</td>
</tr>
<tr>
<td></td>
<td>Safety shoe</td>
</tr>
<tr>
<td></td>
<td>Sarung tangan</td>
</tr>
<tr>
<td></td>
<td>Safety belt</td>
</tr>
<tr>
<td></td>
<td>Safety Net (jaring pengaman)</td>
</tr>
<tr>
<td></td>
<td>Ear plug/ear muff</td>
</tr>
<tr>
<td></td>
<td>Masker</td>
</tr>
<tr>
<td></td>
<td>Geogles</td>
</tr>
<tr>
<td></td>
<td>Poliklinik/Rumah Sakit Rujukan</td>
</tr>
<tr>
<td>15</td>
<td>Unit K3 (P2K3/Safety Committee):</td>
</tr>
<tr>
<td></td>
<td>- Nama</td>
</tr>
<tr>
<td></td>
<td>- Jabatan</td>
</tr>
<tr>
<td></td>
<td>- Anggota-anggota</td>
</tr>
<tr>
<td>16</td>
<td>Usaha-usaha K3 yang akan dilakukan: (Prosedur lengkap dapat diuraikan dalam lembar tersendiri)</td>
</tr>
<tr>
<td></td>
<td>14.1. Panduan K3</td>
</tr>
<tr>
<td></td>
<td>14.2. Program K3</td>
</tr>
<tr>
<td></td>
<td>14.3. Penyuluh K3</td>
</tr>
<tr>
<td></td>
<td>Jakarta,, 1997</td>
</tr>
<tr>
<td></td>
<td>Pelaksana Konstruksi</td>
</tr>
<tr>
<td></td>
<td>(Kontraktor Utama)</td>
</tr>
<tr>
<td></td>
<td>Site Manager</td>
</tr>
</tbody>
</table>

1. Lembar warna putih dikirim ke Kantor Departemen Tenaga Kerja.
2. Lembar warna biru Arsip Kontraktor/Pelaksana Konstruksi.
3. Lembar warna merah dikirim ke Depnaker Pusat Cq. Direktorat Pengawasan Norma K.
4. Lembar warna hijau dikirim ke Kanwil Departemen Tenaga Kerja.
5. Lembar warna kuning dikirim ke kacab, PT. Jamsostek (Persero).
DATA LENGKAP SUB KONTRAKTOR
MASING-MASING JENIS PEKERJAAN

<table>
<thead>
<tr>
<th></th>
<th>Nama Sub Kontraktor</th>
<th>Jenis Pekerjaan</th>
<th>Nama Penanggung Jawab</th>
<th>Nama Sub Kontraktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Data Tenaga Kerja/Pekerja</td>
<td>WNI</td>
<td>WNI</td>
<td>Jumlah</td>
</tr>
<tr>
<td></td>
<td>Management dan Staf</td>
<td>L</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supervisor/Pengawas</td>
<td>L</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreman/Mandor</td>
<td>L</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petugas K3/Safety Officer</td>
<td>L</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operator Crane/Forklift</td>
<td>L</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juru Las</td>
<td>L</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pekerja/tenaga kerja</td>
<td>L</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Data Pesawat, alat, perlengkapan kerja</td>
<td>Jumlah</td>
<td>Sertifikat Nomor</td>
<td>Kondisi</td>
</tr>
<tr>
<td></td>
<td>Genset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mobil Crane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tower Crane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hoisting Lift</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Shovel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excavator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mesin Pembrong</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peralatan/Seafolding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catatan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dapat diisi sesuai jenis pekerjaan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Unit K3/Safety Commite:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nama</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jabatan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anggota-anggota</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Fasilitas K (K3) yang tersedia:</td>
<td>Jumlah</td>
<td>Sertifikat Nomor</td>
<td>Kondisi</td>
</tr>
<tr>
<td></td>
<td>Safety helmet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety shoe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety belt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety Net</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Ear Plug/Ear Muff</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Geogles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mengetahui:
Kontraktor Utama
(Main Kontraktor)

..........................200
Sub Kontraktor
DEPARTEMEN TENAGA KERJA R.I.
DIREKTORAT JENDERAL PEMBINAAN HUBUNGAN INDUSTRIAL
DAN PENGAWASAN KETENAGAKERJAAN
Jl. Jend. Gatot Subroto Kav. No. 51 - JAKARTA
Kotak Pos 4872 Jak. 12048 Telp. 5255733 Pws. 600 - Fax (021) 5253913

Lanjutan

CHEKLIST UNTUK PENGAWASAN
TEMPAT KERJA KEGIATAN KONSTRUKSI BANGUNAN

1 Nama Poyek
2 Lokasi/alamat
3 Pelaksana Konstruksi (kontraktor)

<table>
<thead>
<tr>
<th>No.</th>
<th>ITEM YANG DIPERIKSA/DIAMATI</th>
<th>YA</th>
<th>TIDAK</th>
<th>KETERANGAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 I</td>
<td>Layout / tata ruang lokasi:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Kantor proyek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Gudang bahan material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Kantor proyek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pos keamanan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Poliklinik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Kantin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Kamar MCK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Rute lalu lintas kendaraan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Tempat parkir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Rute jalan orang keluar/masuk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Tempat dan lingkungan kerja:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Penerangan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ventilasi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Corong peluncur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Penyanggah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Tempat penyimpanan bahan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Lokasi dan keadaan peralatan/ mesin-mesin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pesawat-pesawat angkat:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Perizinan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Keadaan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Pemeriksaan terakhir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Data teknik (jenis, Nomor seri, pabrik pembuatan, kapasitas)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Pemilik</td>
<td>- Pesawat-pesawat tenaga/genset:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Perizinan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Keadaan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Penerimaan terakhir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Data teknik (jenis, nomor seri, pabrik pembuatan, kapasitas)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Pemilikan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mesin-mesin perkakas yang ada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV Fasilitas K (K3):</td>
<td>- Peralatan perlindungan dari (PPE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Kotak P& K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Peralatan evaluasi/ penyelamatan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Peralatan pemadam kebakaran</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Jala pengaman (Safety net)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Tempat perlindungan di atas kepala</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V Prosedur K (K3):</td>
<td>- Peraturan-peraturan, pedoman teknik petunjuk pelaksana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Jadwal meeting K3/Unit K3/P2K3/Pemimpin Proyek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Jadwal supervisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Program pencegahan K3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Prosedur pemeriksaan kebersihan tenaga koran</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pelatihan K3 bagi menteri pekereta, anggota pengurus unit K3/P2K3/petugas K3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI Upaya-upaya perlindungan K3:</td>
<td>- Terhadap bahaya jatuh / penada/ palang pengaman/Safety belt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Terhadap kejatuhan benda/ jala pengaman / Safety net/ pagar sementara</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Terhadap robohnya bagian bangunan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Terhadap kebakaran (regu bafakar)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Terhadap kebisingan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Dan lain-lain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII Prosedur pelaporan kepada instansi terkait:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5-18
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII</td>
<td>Lain-lain:</td>
</tr>
<tr>
<td>IX</td>
<td>Syarat-syarat yang harus dilaksanakan oleh kontraktor (syarat-syarat yang diberikan oleh Pengawas K3)</td>
</tr>
<tr>
<td>X</td>
<td>Tanggal pemeriksaan: 1998</td>
</tr>
</tbody>
</table>

Diperiksa oleh:
Nama: [Name]
Jabatan: [Position]
Tanda tangan: [Signature]
BAGIAN KEDUA
PENGENDALIAN LINGKUNGAN

BAB 1
PENDAHULUAN

Permasalahan Lingkungan Hidup telah mulai terlihat sebagai salah satu isu-isi yang utama di berbagai negara sejak pertengahan abad XX. Sejak diselenggarakannya Konferensi Lingkungan Hidup Sedunia di Stockholm tahun 1972, permasalahan lingkungan Hidup telah menjadi perhatian dari berbagai bangsa di seluruh dunia, termasuk Indonesia.

Di Indonesia, permasalahan Lingkungan Hidup telah mendapat perhatian sejak Pelita II, hal tersebut terus berlanjut sampai sekarang, dengan usaha-usaha yang mengikat untuk menegakkan rambu-rambu pengamanan untuk mencegah kegiatan pembangunan yang merusak Lingkungan Hidup, serta melakukan tindakan represif terhadap kegiatan pembangunan yang telah menimbulkan kerusakan lingkungan.

Hal tersebut dilakukan mengingat makin tingginya taraf hidup manusia sehingga akan makin komplek lingkungan binaan yang diperlukan, serta makin besar potensi SDA yang dimanfaatkan.

Mengingat terdapatnya keterkaitan yang erat antara pembangunan dan Lingkungan Hidup, maka dalam GBHN 1999 digariskan kembali kebijaksanaan pengelolaan lingkungan hidup, dengan pendekatan yang bersifat komprehensif-integral (holistik) yang menyentuh semua aspek lingkungan hidup beserta ekosistemnya, yaitu:

1. Pemanfaatan sumber daya alam bagi peningkatan kesejahteraan rakyat perlu diupayakan secara menyeluruh dan terpadu, dengan memperhatikan keseimbangan dan kelestarian lingkungan hidup, serta senantiasa memperhitungkan prinsip-prinsip pembangunan yang berkelanjutan, demi kepentingan generasi mendatang.

2. Pengendalian dan pemanfaatan SDA dalam upaya memacu pertumbuhan yang mendukung pemerataan ekonomi, serta meningkatkan ketahanan ekonomi diupayakan sejalan dengan kemampuan alam Indonesia yang beraneka ragam dan kebutuhan masyarakat yang makin meningkat.

3. Peningkatan potensi sumber daya yang dapat diperbarui diupayakan dengan jalan rehabilitasi SDA yang keadaannya kritis dan konservasi sumber daya alam yang masih utuh.

4. Kesadaran masyarakat akan pentingnya perlindungan daya dukung lingkungan hidup perlu ditingkatkan agar dapat mendorong pelaksanaan pembangunan yang berwawasan lingkungan.
5. Pembangunan yang makin meningkat dan bertambahnya penduduk akan dihadapkan pada kondisi SDA yang semakin terbatas, khususnya SDA yang tidak dapat diperbaharui.

6. Pemanfaatan dan pengelolaan sumber daya lahan, air, hutan dan pola tata ruang perlu dilaksanakan secara menyeluruh dan terpadu dengan terus memperhatikan kelestarian fungsi lingkungan hidup, khususnya pelestarian daerah resapan dan daerah penyangga air.

Kebijakan-kebijakan pemerintah di bidang lingkungan hidup tersebut diatas selanjutnya dibabarkan dalam berbagai peraturan perundangan seperti:

1. Undang-Undang No. 4 Tahun 1982 tentang Ketentuan-ketentuan Koko Pengelolaan Lingkungan Hidup.

Selain itu berbagai peraturan perundangan yang diterbitkan akhir-akhir ini juga banyak yang mengacu pada permasalahan Lingkungan Hidup seperti Undang-Undang Penataan Ruang, Undang-Undang Konservasi Sumber Daya Hayati dan Ekosistemnya. Peraturan Pemerintah tentang Pengelolaan Kawasan Lindung dan sebagainya.

Dalam pelaksanaan konstruksi akan terdapat banyak komponen kegiatan yang dapat menimbulkan dampak penting terhadap Lingkungan Hidup, sehingga untuk mengantisipasi hal tersebut diatas, maka sesuai dengan ketentuan-ketentuan dalam peraturan perundangan yang berlaku, kegiatan tersebut di atas wajib dilengkapi dengan Analisis Mengenai Dampak Lingkungan (AMDAL) yang pelaksanaannya mengacu pada berbagai pedoman dan petunjuk teknis AMDAL yang relevan, dengan memperhatikan sasaran dan ciri-ciri atau karakteristik kegiatan proyek yang bersangkutan.
BAB 2
PENGERTIAN DASAR LINGKUNGAN HIDUP

2.1 Konsep Lingkungan Hidup

1. Istilah Lingkungan Hidup berasal dari kata "Environment" (lingkungan sekitar), yang oleh Michael Allaby diartikan sebagai "The physical, chemical, and biotic condition surrounding an organism", sedangkan Emil Salim mengatakan bahwa secara umum lingkungan hidup dapat diartikan sebagai suatu kondisi dan keadaannya, serta pengaruh yang terdapat pada suatu yang kita tempati dan mempengaruhi makhluk hidup, termasuk kehidupan manusia. Dalam Undang-Undang No. 4 Tahun 1982 tentang Ketentuan-Ketentuan Pokok Pengelolaan Lingkungan Hidup, dinyatakan bahwa Lingkungan Hidup adalah kesatuan ruang dengan semua benda, daya, dan keadaan, makhluk hidup termasuk manusia dan perilakunya, yang mempengaruhi kelangsungan perikehidupan dan kesejahteraan manusia dan makhluk hidup lainnya. Dari berbagai dimensi tersebut di atas dapat disimpulkan bahwa lingkungan hidup pada dasarnya terdiri atas 4 unsur, yaitu materi, energi, ruang dan kondisi/situasi setempat, dengan urutan sebagai berikut:

a. Unsur Materi

Materi adalah bahan yang dapat berbentuk biotik (Hewan, Tumbuhan, Manusia), atau abiotik (Tanah, Air, Udara, dsb). Kedua unsur tersebut mempunyai hubungan timbal balik, dan saling pengaruh mempengaruhi secara ekologis. Unsur ini mengalami proses siklusal yaitu proses yang berulang kembali kepada keadaan semula, adapun dalam perjalananannya akan mengalami perubahan bentuk. Misalnya tumbuh-tumbuhan, untuk dapat hidup memerlukan energi dan mineral, kemudian melalui proses "rantai makanan", tumbuhan ini dimakan oleh hewan konsumen Tk. I (Herbivora = pemakan tumbuhan), yang selanjutnya menjadi mangsa dari hewan konsumen Tk. II (Omnivora = pemakan segala).

Pada saatnya, tumbuhan dan hewan tersebut mengalami proses kematian, dan jasadnya menjadi mangsa bakteri Saprodit (bakteri pembusuk) yang menguraikan jasad tadi menjadi unsur dasar (C, N, O, S, P dsb) yang diperlukan untuk kehidupan makhluk hidup.
b. Unsur Energi

Semua makhluk yang bergerak untuk dapat hidup memerlukan energi, demikian pula untuk dapat berinteraksi diperlukan adanya energi. Sumber energi yang berlimpah berasal dari cahaya matahari, energi ini dapat menyebabkan pohon dan tumbuhan yang berdaun hidau akan dapat melakukan proses foto sintesa untuk tumbuh menuju proses kehidupan. Demikian pula dengan biji-biji dapat tumbuh dan berkembang karena adanya energi matahari ini.

c. Unsur Ruang

Ruang adalah tempat atau wadah dimana lingkungan hidup berada, suatu ekosistem habitat tertentu akan berada pada suatu ruang tertentu, artinya mempunyai batas-batas tertentu yang dapat dilihat secara fisik. Dengan mengetahui ruang habitat suatu ekosistem maka pengelolaan lingkungan dapat lebih mudah ditangani secara spesifik.

d. Unsur Kondisi / Situasi

Kondisi atau situasi tertentu dapat mempengaruhi lingkungan hidup, misalnya karena desakan ekonomi masyarakat pada suatu daerah tertentu, maka penduduk di wilayah tersebut terpaksa melakukan pembakaran hutan untuk usaha pertanian yang dapat menimbulkan ancaman erosi lahan.

2. Menurut Undang-Undang No. 4 Tahun 1992 tentang Ketentuan-Ketentuan Pokok-Pendekatan Lingkungan Hidup, yang kemudian dijabarkan ke dalam Peraturan Pemerintah No. 51 Tahun 1993 tentang Analisis Mengenai Dampak Lingkungan serta Pedoman-pedoman Umum Pelaksanaannya; maka aspek-aspek Lingkungan Hidup yang terkait dengan pekerjaan konstruksi dapat dibedakan atas :

a. Komponen Fisik – Klima

1) Iklim seperti suhu, kelembaban, curah hujan, hari hujan, keadaan angin, intensitas radiasi matahari, serta pola iklim mako.

Uraian tentang iklim termasuk pula kualitas udara, pola penyebaran pencahayaan udara, serta tingkat kebisingan dan sumbarnya.

2) Fisioografi, seperti topografi bentuk lahan, struktur geologi dan tanah, serta keunikan dan kerawanan bentuk lahan secara geologis, termasuk indikatonya.
3) Hidrologi, seperti karakteristik fisik sungai, danau, rawa, debit aliran, kondisi fisik daerah resapan, tingkat erosi, tingkat penyediaan dan pemanfaatan air, serta kualitas fisik, kimia, dan mikrobiologisnya.
4) Hidrogeolog, atau pola hidrodinamika kelayakan seperti pasang surut, arus dan gelombang/ombak, morphologi pantai serta abrasi dan akresi pantai.
5) Ruang, tanah dan lahan, seperti tata guna lahan yang ada, rencana pengembangan wilayah, rencana tata ruang, rencana tata guna lahan, estetika bentang lahan, serta adanya konflik penggunaan lahan yang ada.

b. Komponen Biologi.
1) Flora, seperti peta zona biogeoklimatis dan vegetasi alami, jenis-jenis vegetasi dan ekosistem yang dilindungi undang-undang, serta adanya keunikan dari vegetasi dan ekosistem yang ada.
2) Fauna, seperti kelimpahan dan keanekaragaman fauna, habitat, penyebaran, pola migrasi, populasi hewan budidaya, serta satwa yang habitatnya dilindungi undang-undang. Termasuk dalam fauna ini adalah penyebaran dan populasi hewan, invertebrata yang mempunyai potensi dan peranan sebagai bahan makanan, atau sumber hama dan penyakit.

c. Komponen Sosial Ekonomi dan Sosial Budaya
1) Demografi, seperti struktur pendudukan, tingkat kepadatan, angkatan kerja, tingkat kelahiran dan kematian, serta pola perkembangan penduduk.
2) Sosial Ekonomi, seperti kesempatan kerja dan berusaha, tingkat pendapatan penduduk, prasarana dan sarana ekonomi, serta pola pemilikan dan pemanfaatan sumber daya alam.
3) Sosial Budaya, seperti pranata sosial dan lembaga-lembaga kemasyarakatan, adat istiadat dan pola kebiasaan, proses sosial, akulturasi, asimilasi dan integrasi dari berbagai kelompok masyarakat, pelapisan sosial dalam masyarakat, perubahan sosial yang terjadi serta sikap dan persepsi masyarakat.
4) Komponen Kesehatan Masyarakat, seperti sanitasi lingkungan, jenis dan jumlah fasilitas kesehatan, cakupan pelayanan paramedis, tingkat gizi dan kecukupan pangan serta insidensi dan prevalensi penyakit yang terkait dengan rencana kegiatan.
2.2 Ekologi Dan Ekosistem

1. Dalam Lingkungan Hidup dikenal adanya istilah ekologi dan ekosistem, yang keduaunya sangat terkait dengan masalah lingkungan hidup. Ekologi berasal dari kata Yunani, oikos (rumah tangga) dan logos (ilmu), dengan demikian ekologi dapat didefinisikan sebagai suatu ilmu tentang rumah tangga alami.
Menurut Otto Sumarwoto, ekologi adalah ilmu tentang hubungan timbal balik antara makhluk hidup dan lingkungan hidupnya, baik biotis maupun abiotis. Oleh karena itu pada hakikatnya masalah lingkungan hidup adalah masalah ekologi.
Perbedaan utama antara disiplin Lingkungan Hidup dan disiplin Ekologi terletak pada penekanannya. Lingkungan Hidup lebih menonjolkan peran manusianya, sehingga faktor manusia lebih dominan, misalnya bagaimana aktivitas manusia agar tidak merusak atau mencemari lingkungan. Sedangkan ekologi sebagai cabang ilmu Biologi mempelajari hubungan timbal balik antara makhluk hidup dengan lingkungannya ditinjau dari disiplin biologi, misalnya bagaimana terselenggaranya mata rantai makanan, sistem reproduksi atau karakteristik habitat makhluk pada suatu ekosistem. Dengan demikian dapat pula dikatakan bahwa ilmu lingkungan hidup lebih bersifat ilmu aplikatif (applied science), yaitu menggunakan pengetahuan ekologi untuk kepentingan kelangsungan hidup manusia yang lebih lestari.

2. Ekosistem adalah hubungan timbal balik yang terjalin sangat erat antara makhluk hidup dan lingkungannya dan membentuk suatu sistem.
Hubungan interaksi antar komponen pada suatu ekosistem, dapt berbentuk :
a. Interaksi Simbiosis, dimana kedua belah pihak yang berhubungan tidak dirugikan, misalnya tumbuhan polong-polongan (leguminosa) mengadakan simbiosis dengan bakteri yang ada di akarnya, dimana bakteri mendapat zat hidrat arang (C) dari tumbuhan sedangkan bakteri sendiri menghasilkan zat lemas (N) yang berguna bagi tumbuhan.
b. Interaksi antagonistik, dapat berupa :
 • Antibiosa, yang dapat mematikan makhluk lain.
 • Eksploitasi, yang dapat mengkonsumsi makhluk lain.
 • Kompetisi, yang saling bersaing untuk mempertahankan eksistensinya dalam upaya memperoleh sumber daya yang jumlahnya terbatas.
c. Netralistik, tidak adanya interaksi antar komponen, misalnya antara makhluk burung dengan anjing tidak terjadi interaksi, baik yang sifatnya simbiosa maupun antagonistik.

2.3 Baku Mutu Lingkungan

Dalam pekerjaan konstruksi perlu diperhatikan kemungkinan terjadinya perubahan kualitas lingkungan akibat masuknya bahan pencemar yang ditimbulkan oleh rencana kegiatan, yang pada umumnya terjadi pada komponen fisik, kira-kira, namun bila tidak dilanggar dengan baik dapat menimbulkan dampak lanjutan terhadap komponen lingkungan lain seperti biologi atau sosial ekonomi dan sosial budaya.

Untuk mengetahui apakah perubahan lingkungan tersebut mendapat toleransi mutu lingkungan yang diperkenankan, dikenal adanya standar baku mutu lingkungan yang ditetapkan secara nasional oleh Menteri Negara Lingkungan Hidup atau tingkat Daerah oleh Gubernur.

Baku Mutu Air

Baku mutu air atau sumber air adalah batas kadar yang dibolehkan bagi zat atau bahan pencemar pada air, namun air tetap berguna sesuai peruntukannya.

Penentuan baku mutu air didasarkan atas daya dukung air pada sumber air, yang disesuaikan dengan peruntukan air tersebut sebagai berikut:

a. Golongan A, air yang dipakai sebagai air minum secara langsung tanpa pengolahan lain dibutuhkan.

b. Golongan B, air yang dapat dipakai sebagai air baku untuk diolah sebagai air minum dan untuk keperluan rumah tangga.

c. Golongan C, air yang dapat dipakai untuk keperluan perikanan dan peternakan.

d. Golongan D, air yang dapat dipakai untuk keperluan pertanian dan dapat dimanfaatkan untuk usaha perkotaan, industri dan listrik tenaga air.

Selain baku mutu air, dikenal pula istilah baku mutu limbah cair, yaitu batas kadar yang dibolehkan bagi zat atau bahan pencemar untuk dibuang ke dalam air atau sumber air, sehingga tidak mengakibatkan dilampauinya baku mutu air.

Penentuan baku mutu limbah cair ini ditetapkan dengan pertimbangan beban maksimal yang dapat diterima air dan sumber air, dan dibedakan atas 4 golongan baku mutu air limbah, yakni Golongan I, II, III dan IV.

Besarnya kadar pencemaran yang diperbolehkan untuk setiap parameter kualitas air dan air limbah dapat dilihat pada pedoman penentuan baku mutu lingkungan yang
diterbitkan oleh Kantor Menteri Negara Lingkungan Hidup seperti terlihat pada lampiran.

Baku Mutu Udara.

Baku mutu udara dibedakan atas dua hal, yaitu:

- Baku mutu udara ambien, yaitu kadar yang dibolehkan bagi zat atau bahan pencemar terdapat di udara, namun tidak menimbulkan gangguan terhadap makhluk hidup, tumbuhan-tumbuhan atau benda hidup lainnya yang penentuannya dengan mempertimbangkan kondisi udara setempat.
- Baku mutu udara emisi, yaitu batas kadar yang dibolehkan bagi zat atau bahan pencemar, untuk dikeluarkan dari sumber pencemaran ke udara, sehingga tidak mengakibatkan dilampauinya baku mutu udara ambien yang penentuannya didasarkan sumber bergerak atau sumber tidak bergerak serta dibedakan antara baku mutu berat, sedang dan ringan.

- Besarnya kadar pencemaran yang dibolehkan untuk setiap parameter udara dapat dilihat pada pedoman penentuan baku mutu lingkungan yang diterbitkan oleh Kantor Menteri Negara Lingkungan Hidup, seperti dapat dilihat pada Lampiran.

Selain itu dikenal pula istilah baku mutu kebisingan yang penentuannya didasarkan atas peruntukan lahan di lokasi tersebut yang seperti contoh menurut Keputusan Gubernur DKI Jakarta No. 517 tahun 1990 adalah:

<table>
<thead>
<tr>
<th>No</th>
<th>Peruntukan</th>
<th>Max. Derajat Kebisingan (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yang diinginkan</td>
</tr>
<tr>
<td>1</td>
<td>Perumahan</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>Industri/Perkantoran</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>Pusat Perdagangan</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>Tempat Rekreasi</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Campuran Industri / Perumahan</td>
<td>50</td>
</tr>
</tbody>
</table>

Baku Mutu Air Laut.

Baku mutu air laut adalah batas atau kadar makhluk hidup, zat, energi, atau komponen lainnya yang ada atau harus ada, dan zat atau bahan pencemar yang ditenggang adanya dalam air laut.
Penentuan baku mutu air laut ini didasarkan atas pemanfaatan perairan pesisir laut, menurut peruntukannya, seperti:

a. Kawasan pariwisata dan rekreasi untuk mandi dan renang.

b. Kawasan pariwisata dan rekreasi untuk umum dan estetika.

c. Kawasan budidaya biota laut.

d. Kawasan taman laut dan konservasi.

e. Kawasan untuk bahan baku dan proses kegiatan pertambangan dan industri.

g. Kawasan sumber air pendingin untuk kegiatan pertambangan dan industri.

Penetapan peruntukan kawasan laut tersebut menjadi wewenang Gubernur setempat, dan besarnya kadar / bahan pencemar dapat ditentukan pada pedoman penetapan baku mutu lingkungan hidup yang ditetapkan oleh Kantor Menteri Negara Lingkungan Hidup.
BAB 3
INTEGRASI ASPEK LINGKUNGAN PADA KEGIATAN PROYEK

3.1 Pengertian Amdal

1. Analisis Mengenai Dampak Lingkungan (AMDAL) adalah hasil studi mengenai dampak penting suatu kegiatan yang direncanakan terhadap lingkungan hidup yang diperlukan bagi proses pengambilan keputusan.

Disesuaikan dengan jenis kegiatannya, AMDAL dapat dibedakan atas:

a. AMDAL Sektoral, biasanya disebut AMDAL, bila kegiatan terletak pada satu lokasi tertentu dan melibatkan kewenangan satu instalasi yang bertanggung jawab.

b. AMDAL Kawasan, bila kegiatan terletak pada satu kesatuan hamparan ekosistem dan menyangkut kewenangan satu instalasi yang bertanggung jawab.

c. AMDAL terpadu / Multi Sektor, bila kegiatan terletak pada satu kesatuan hamparan ekosistem dan menyangkut kewenangan lebih dari satu instalasi yang bertanggung jawab.

d. AMDAL Regional, bila kegiatan terletak pada satu kesatuan hamparan ekosistem dan satu rencana pengembangan wilayah sesuai dengan RUTR dan melibatkan kewenangan lebih dari satu instalasi yang bertanggung jawab.

Dokumen AMDAL tersebut di atas terdiri atas berbagai dokumen yang berturut-turut sebagai berikut:

a. KA-ANDAL, yaitu ruang lingkup studi ANDAL yang merupakan hasil pelingkupan atau proses pemusatan studi pada hal-hal penting yang berkaitan dengan dampak penting.

b. ANDAL (Analisis Dampak Lingkungan), yaitu dokumen yang menelaah secara cermat dan mendalam tentang dampak penting suatu rencana atau kegiatan.

c. RKL (Rencana Pengelolaan Lingkungan) adalah dokumen yang mengandung upaya penanganan dampak penting terhadap lingkungan hidup yang ditimbulkan oleh rencana kegiatan.
d. RPL (Rencana Pemantauan Lingkungan) adalah dokumen yang mengandung upaya pemantauan komponen lingkungan hidup yang terkena dampak penting akibat rencana kegiatan.

2. Dalam suatu pekerjaan konstruksi terkadang dapat menimbulkan dampak penting, atau perubahan lingkungan yang mendasar, yang penentuannya didasarkan oleh faktor-faktor sebagai berikut:
 a. Jumlah manusia yang akan terkena dampak.
 b. Luas wilayah sebaran dampak.
 c. Lamanya dampak berlangsung.
 d. Intensitas Dampak.
 e. Banyaknya komponen lain yang terkena dampak.
 f. Sifat kumulatif dampak.
 g. Berbalik atau tidak berbaliknya dampak.

Kriteria-kriteria atas besaran faktor-faktor yang menimbulkan dampak penting tersebut dapat dilihat pada pedoman mengenai ukuran dampak penting yang tercantum dalam Keputusan Kepala Bappeda No. 056 tahun 1994, dan perlu dikaji secara mendalam dalam laporan ANDAL.

Sedangkan kegiatan-kegiatan yang berpotensi mempunyai dampak penting terhadap lingkungan seperti tersebut diatas antara lain:
 a. Perubahan bentuk lahan dan bentang alam.
 b. Exploitation Sumber Daya Alam yang terbubarui maupun yang tak terbubarui.
 c. Proses dan kegiatan yang secara potensial dapat menimbulkan pemborosan, kerusakan dan kemeratasan Sumber Daya Alam dalam pemahattannya.
 d. Proses dan kegiatan yang hasilnya dapat mempengaruhi pelestarian kawasan konservasi sumber daya alam dan atau perlindungan cagar budaya.
 e. Introduksi jenis tumbuh-tumbuhan, jenis hewan dan jasad renik.
 f. Pembuatan dan penggunaan bahan hayati dan non hayati.
 g. Penerapan terknotologi yang diperkirakan mempunyai potensi besar mempengaruhi lingkungan.
 h. Kegiatan yang mempunyai resiko tinggi dan mempengaruhi pertahanan negara.

Penentuan apakah kegiatan ini menimbulkan dampak penting sehingga perlu melaksanakan AMDAL, ditetapkan oleh Menteri Negara Lingkungan Hidup
setelah mendengar dan memperhatikan saran dan pendapat instansi yang bertanggung jawab atas kegiatan tersebut.

Sedangkan untuk kegiatan-kegiatan yang tidak menimbulkan dampak penting dan atau secara teknologi dampak penting yang timbul dapat dikelola, maka kegiatan tersebut tidak diwajibkan menyusun ANDAL, namun diharuskan melakukan upaya pengelolaan lingkungan dan upaya pemantauan lingkungan, dalam rangka mewujudkan pembangunan yang berawasann lingkungan.

3.2 Kedudukan AMDAL Dalam Proses Pengembangan Proyek

Proses pengembangan proyek pada umumnya meliputi tahapan-tahapan perencanaan umum, studi kelayakan termasuk pra-studi kelayakan, perencanaan teknis, konstruksi dan tahapan pasca konstruksi yang mencakup operasi, pemeliharaan serta pemanfaatannya.

Sesuai dengan ketentuan yang berlaku, kegiatan AMDAL merupakan bagian dari proses dari setiap tahapan pengembangan proyek tersebut di atas, seperti dapat dilihat pada lampiran 1.

1. Penyaringan AMDAL pada tahap Berencana Umum.

Perencanaan Umum merupakan awal dari suatu gagasan atau ide untuk memenuhi suatu kebutuhan atau permintaan masyarakat, dapat berupa rencana jangka panjang, rencana jangka menengah dan jangka pendek, yang secara terus menerus menghasilkan rencana dan program untuk diimplementasikan.

Pada tahap ini dilakukan penyaringan AMDAL untuk mengetahui secara umum apakah proyek tersebut menimbulkan perubahan yang mendasar terhadap lingkungan, sehingga harus melaksanakan AMDAL, ataupun tidak menimbulkan dampak yang berarti sehingga cukup melaksanakan UKL dan UPL.

Besarnya perubahan lingkungan yang timbul tersebut sangat dipengaruhi oleh:
- Volume dan besaran rencana kegiatan.
- Lokasi proyek dan kondisi lingkungannya.
- Fungsi dan peruntukan lahan di sekitar lokasi proyek.

2. Pelingkupan dan KA-ANDAL pada tahap pra studi kelayakan.

Pra studi kelayakan merupakan bagian dari studi kelayakan dilakukan untuk menganalisis apakah proyek yang diusulkan tersebut dapat dipertanggung jawabkan baik dari segi teknis, ekonomi dan lingkungan.
Kegiatan AMDAL berupa pelingkupan adalah proses awal untuk menentukan lingkup permasalahan dan mengidentifikasi dampak penting hipotesis yang timbul dari rencana proyek yang diusulkan. Pelingkupan ini merupakan proses penting dalam penyusunan KA-ANDAL, karena melalui proses ini dapat ditentukan:
- Dampak penting hipotesis yang relevan untuk dibahas dalam ANDAL.
- Batas wilayah studi ANDAL.

KA-ANDAL sebagai penjabaran lebih lanjut dari pelingkupan dianggap merupakan ruang lingkup studi ANDAL yang dipakai sebagai acuan untuk menyusun studi ANDAL.

Untuk itu KA-ANDAL minimal harus mencakup:
- Informasi rencana proyek dan kondisi lingkungannya.
- Lingkup tugas studi termasuk metode studi.
- Kebutuhan tenaga ahli dan jadwal pelaksanaannya.

3. Studi ANDAL pada tahap Studi Kelayakan

Sesuai dengan kebijaksanaan, pengubahan yang berwawasan lingkungan studi kelayakan harus mencakup aspek-aspek teknis, ekonomis dan lingkungan, akan menghasilkan studi dokumen bagi para pengambil keputusan apakah proyek tersebut layak untuk dilaksanakan. Studi ANDAL yang dilakukan pada tahap ini merupakan penelaahan dampak penting yang timbul akibat rencana kegiatan proyek secara cermat dan mendalam, dan hasilnya merupakan acuan untuk merumuskan penanganan dampak yang timbul tersebut dalam bentuk Rencana Pengelolaan Lingkungan (RKL) dan Rencana Pemantauan Lingkungan (RPL).

Studi ini juga merupakan dokumen proyek yang penting, karena dipakai oleh para pengambil keputusan apakah proyek tersebut layak dimulai dari segi lingkungan, sehingga dapat diimplementasikan.

4. Penjabaran RKL dan RPL pada Tahap Perencanaan Teknis

Perencanaan teknis dimaksudkan untuk menyiapkan gambar-gambar teknis, syarat dan spesifikasi teknis kegiatan, sehingga dapat menggambarkan produk yang akan dihasilkan, didasarkan atas kriteria-kriteria yang ditetapkan dalam studi kelayakan.

Untuk mewujudkan suatu perencanaan teknis yang berwawasan lingkungan, maka perumusan RKL dan RPL harus dijabarkan dalam gambar-gambar teknis.
dan spesifikasi teknis tersebut, serta perlu dituangkkan dalam dokumen kontrak, sehingga mengikat pelaksana proyek.

5. Pelaksana RKL dan RPL.
 a. Pada tahap pra konstruksi
 Kegiatan pra konstruksi dalam hal ini pengadaan tanah dan pemindahan penduduk harus didukung dengan data yang lengkap dan aktual tentang lokasi, luas, jenis perunutan serta kondisi penduduk yang memikirkan atau menempati tanah yang dibebaskan tersebut.
 Ketentuan-ketentuan yang rinci tentang masalah pembebasan tanah dalam RKL dan RPL harus dapat digunakan dan dimanfaatkan sebagai acuan dalam pelaksanaan pembebasan tanah dan pembebasan tanah tersebut.

 b. Pada tahap konstruksi.
 Kegiatan pada tahap ini merupakan pelaksanaan fisik konstruksi sesuai dengan gambar dan syarat-syarat teknis yang telah dirumuskan dalam kegiatan perencanaan teknis.
 Kegiatan pengelolaan lingkungan yang tercakup pada tahap ini meliputi penerapan:
 • Metode konstruksi, spesifikasi serta persyaratan kualitas dan kuantitas pekerjaan yang terkait dengan penanganan dampak penting.
 • Penerapan BOE yang mengacu dampak lingkungan.
 • Tata cara penilaian hasil pelaksanaan pengelolaan lingkungan dan tindak lanjutnya.

Sedangkan penerapan RPL pada tahap ini mencakup:
 • Pemantauan pelaksanaan konstruksi agar sesuai dengan gambar dan spesifikasi teknis yang telah mengikuti Kaidah lingkungan.
 • Penerapan dan pelaksanaan uji coba operasional.
 • Penilaian hasil pelaksanaan pengelolaan lingkungan dan pemantauan lingkungan untuk masukan bagi penyempurnaan pelaksanaan RKL dan RPL.

6. Evaluasi pengelolaan dan pemantauan lingkungan pada tahap pasca proyek.
 Evaluasi pasca proyek ditujukan: untuk menilai dan pengupayakan peningkatan daya guna dan hasil guna dari prasarana yang telah dibangun dan dioperasikan.
Evaluasi pengelolaan dan pemantauan lingkungan dimaksudkan untuk memantapkan SOP dengan mengacu pada pengalaman yang didapat dilapangan selama kegiatan proyek berlangsung.

3.3 Proses Penyusunan Dan Pelaksanaan Amdal.

Penyusunan AMDAL untuk kegiatan konstruksi fisik yang diperkirakan menimbulkan dampak penting terhadap lingkungan hidup, memerlukan data dan informasi mengenai berbagai komponen kegiatan proyek yang berpotensi menimbulkan dampak penting serta komponen lingkungan disekitar lokasi kegiatan yang berpotensi terkena dampak akibat kegiatan.

Penelitian terhadap kedua hal tersebut menjadi sangat penting karena ketepatan dan ketelitian analisis dampak lingkungan sepenuhnya bergantung dari kelengkapan dan kedalaman data dan informasi yang diperoleh.

Dengan melakukan analisis dampak lingkungan diperkirakan dan dievaluasi jenis, besaran atau intensitas serta tingkat pentingnya dampak yang terjadi.

Intensitas dampak dapat diperkirakan atau dihitung besarnya denan memakai berbagai metode yang sesuai untuk komponen lingkungan tertentu, seperti metode statistik, matematik, metode kirany, eksperimental, analogi ataupun profesional judgement. Sedangkan tingkat pentingnya dampak dapat mengacu pada Pedoman Penentuan Dampak Penyerta yang ditetapkan oleh Kepala Bapedal No. 056 Tahun 1994, dimana tingkat pentingnya dampak ditentukan oleh faktor-faktor:

a. Jumlah penduduk yang akan terkena dampak.
b. Luas wilayah sebaran dampak.
c. Latarwnya dampak berlangsung.
d. Intensitas dampak.
e. Banyaknya komponen lingkungan lain yang akan terkena dampak.
f. Sifat kumulatif dampak.
g. Berbalik atau tidak berbaliknya dampak.

Informasi tentang intensitas atau bobot dampak tersebut diatas secara sistematis dituangkan dalam dokumen AMDAL, dan menjadi acuan dalam perumusan upaya penanganan dampak yang timbul, yang dituangkan dalam dokumen Rencana Pengelolaan Lingkungan (RKL) dan Rencana Pemantauan Lingkungan (RPL). Dokumen RKL dan RPL ini harus dapat dijabarkan dalam gambar-gambar kerja dan syarat-syarat pelaksanaan, serta acuan dalam melaksanakan pekerjaan.
Selanjutnya dokumen RKL dan RPL ini dipakai pula sebagai dasar untuk pelaksanaan pengelolaan lingkungan (KL) dan pelaksanaan pemantauan lingkungan (PL), selama masa pra-konstruksi, konstruksi maupun pada pasca konstruksi.

Dalam pelaksanaan, pengelolaan dan pemantauan lingkungan tersebut dilakukan penilaian atas hasil pemantauan lingkungan dan hasil pemantauan lingkungan ini dapat menjadi umpan balik bagi pelaksana pengelolaan dan pemantauan lingkungan, serta dapat dikapai sebagai acuan bagi upaya pengembangan, penyempurnaan atau pemantapan dokumen RKL dan RPL yang telah disusun.

Proses penyusunan AMDAL tersebut secara diagramatis dapat dilihat pada Lampiran 2.
BAB 4
PENANGANAN DAMPAK LINGKUNGAN PADA PEKERJAAN KONSTRUKSI

4.1 Prinsip Dasar Pengelolaan Lingkungan Hidup

1. Prinsip Pengelolaan Lingkungan.

Pengelolaan lingkungan adalah upaya terpadu dalam melaksanakan penanaman, penataan, pemeliharaan, pengawasan, pengendalian dan pencegahan lingkungan hidup, sehingga pelestarian potensi sumber daya alam dapat tetap dipertahankan, dan pencemaran atau kerusakan lingkungan dapat dicegah.

Perwujudan dari usaha tersebut antara lain dengan menerapkan teknologi yang tepat dan sesuai dengan kondisi lingkungan.

Untuk itu berbagai prinsip yang dipakai untuk pengelolaan lingkungan antara lain:

a. Preventif (pencegahan), didasarkan atas prinsip untuk mencegah timbulnya dampak yang tidak diinginkan, dengan mengenal secara dini kemungkinan timbulnya dampak negatif, sehingga rencana pencegahan dapat disiapkan sebelumnya.

Beberapa contoh dalam penerapan prinsip ini adalah melaksanakan AMDAL secara baik dan benar, pemantauan sumber daya alam dengan efisien sesuai potensinya serta mengacu pada tata ruang yang telah ditetapkan.

b. Kuratif (penanggulangan), didasarkan atas prinsip menanggulangi dampak yang terjadi atau yang diperkirakan akan terjadi, namun karena keterbatasan teknologi, hal tersebut tidak dapat dihindari.

Hal ini dilakukan dengan pemantauan terhadap komponen lingkungan yang terkena dampak seperti kualitas udara, kualitas air dan sebagainya.

Apabila hasil pemantauan lingkungan mendeteksi adanya perubahan atau pencemaran lingkungan, maka perlu ditelusuri penyebab/sumber dampaknya, dikaji pengaruhnya, serta diupayakan menurunnya kadar pencemaran yang timbul.

c. Insentif (kompensasi), didasarkan atas prinsip dengan mempertemukan kepentingan 2 pihak yang terkait, disatu pihak pemrakarsa/pengelola kegiatan yang mendapat manfaat dari proyek tersebut harus memperhatikan pihak lain yang terkena dampak, sehingga tidak merasa dirugikan. Perangkat insentif ini dapat juga berupa pengaturan oleh pemerintah seperti
peningkatan pajak atas buangan limbah, iuran pemakaian air, proses perizinan dan sebagainya.

2. Pendekatan Pengelolaan Lingkungan

Rencana pengelolaan lingkungan, harus dilakukan dengan mempertimbangkan pendekatan teknologi, yang kemudian harus dapat dipadukan dengan pendekatan ekonomi, serta pendekatan institusional sebagai berikut:

a. Pendekatan Teknologi.

Berupa tata cara teknologi yang dapat dipergunakan untuk melakukan pengelolaan lingkungan, seperti:

1. Menanggulangi kerusakan lingkungan, antara lain dengan:
 a. Melakukan reklamasi lahan yang rusak.
 b. Memperkecil erosi dengan sistem terasering dan penghijauan.
 c. Penanaman pohon-pohon kembali pada lokasi bebas quarry dan tanah kosong.
 d. Tata cara pelaksana konstruksi yang tepat.

2. Menanggulangi menurunnya potensi sumber daya alam, antara lain dengan:
 a. Mencegah menurunnya kualitas / kesuburan tanah, kualitas air dan udara.
 b. Mencegah rusaknya kondisi flora yang menjadi habitat fauna.
 c. Meningkatkan diversifikasi penggunaan bahan material bangunan.

3. Menanggulangi limbah dan pencemaran lingkungan, antara lain dengan:
 a. Mendaftar ulang limbah, hingga dapat memperkecil volume limbah.
 b. Mengencerkan kadar limbah, baik secara alamiah maupun secara engineering.
 c. Menyempurnakan design peralatan / mesin dan prosesnya, sehingga kadar pencemar yang dihasilkan berkurang.

b. Pendekatan Ekonomi.

Pendekatan ekonomi yang dapat dipakai dalam pengelolaan lingkungan antara lain:

1. Kemudahan dan keringanan dalam proses pengadaan peralatan untuk pengelolaan lingkungan.
2. Pemberian ganti rugi atau kompensasi yang wajar terhadap masyarakat yang terkena dampak.
3. Pemberdayaan masyarakat dalam proses pelaksanaan kegiatan dan penggunaan tenaga kerja.
4. Penerapan teknologi yang layak ditinjau dari segi ekonomi.

c. Pendekatan Institusional / Kelembagaan.

Pendekatan institusional yang dipakai dalam pengelolaan lingkungan antara lain:
1. Meningkatkan koordinasi dan kerjasama dengan instansi terkait, dan masyarakat setempat dalam pengelolaan lingkungan.
3. Penerapan teknologi yang dapat didukung oleh institusi yang ada.

3. Mekanisme pengelolaan dan Pemanfaatan Lingkungan.

 a. Pada prinsipnya pengelolaan lingkungan tersebut menjadi tugas dan tanggung jawab pemakarsa / pengelola kegiatan, dilaksanakan selama pelaksanaan dampak negatif, maupun pengembangan dampak positif.

 b. Kegiatan pengelolaan lingkungan terkait dengan berbagai instansi, dan masyarakat setempat, sehingga perlu dijabarkan keterkaitan antar instansi dalam melaksanakan pengelolaan lingkungan tersebut.

 Penentuan instansi terkait, disesuaikan dengan fungsi, wewenang dan bidang tugas serta tanggung jawab instansi tersebut.

 c. Mengingat bahwa pengelolaan lingkungan harus dilakukan selama proyek berlangsung, maka perlu ditetapkan unit kerja yang bertanggung jawab melaksanakan pengelolaan lingkungan, serta tata cara kerjanya. Unit kerja tersebut dapat berupa pembentukan unit baru atau pengembangan dari unit kerja yang sudah ada. Pemakarsa / pengelola kegiatan harus mengambil inisiatif dalam melakukan pengelolaan lingkungan, sedangkan instansi terkait dierahkan untuk menyempurnakan dan memantapkannya.

 d. Pembiayaan merupakan faktor yang penting atas terlaksananya pengelolaan lingkungan, untuk itu sumber dan besarnya biaya harus dijabarkan dalam RKL. Pada prinsipnya pemakarsa / pengelola kegiatan harus bertanggung jawab atas penyediaan dana untuk pengelolaan lingkungan yang diperlukan.
4.2 Komponen Pekerjaan Konstruksi Yang Menimbulkan Dampak

Komponen pekerjaan konstruksi dapat menimbulkan dampak terhadap lingkungan hidup, sangat dipengaruhi oleh jenis besaran dan volume pekerjaan tersebut serta kondisi lingkungan yang ada di sekitar lokasi kegiatan.

Pada umumnya komponen pekerjaan konstruksi yang dapat menimbulkan dampak antara lain :

1. Persiapan Pelaksanaan Konstruksi.
 a. Mobilitas peralatan berat, terutama untuk jenis kegiatan konstruksi yang memerlukan banyak alat-alat berat, dan terletak atau melintas areal pemukiman, serta kondisi prasarana jalan yang kurang memadai.
 b. Pembuatan dan pengoperasian bengkel, kelasan dan barak kerja yang besar dan terletak di areal pemukiman.
 c. Pembukaan dan pembersihan lahan untuk lokasi kegiatan yang cukup luas dan dekat areal pemukiman.

2. Pelaksanaan Kegiatan Konstruksi.
 a. Pekerjaan tanah, mencakup penggalian dan penimbunan tanah.
 b. Pengangkutan tanah dan bahan bangunan.
 c. Pembuatan pondasi, terutama pondasi tiang pancang.
 d. Pekerjaan struktur bahan, berupa beton, baja dan kayu.
 e. Pekerjaan jalan dan pekerjaan jembatan.
 f. Pekerjaan pengairan seperti saluran dan tanggul irigasi / banjir, sudetan sungai, bendung serta bendungan.

Disesuaikan dengan kondisi lingkungan yang ada disekitar lokasi kegiatan, kegiatan konstruksi tersebut diatas akan dapat menimbulkan dampak terhadap komponen fisik kimia dan bahkan bila tidak ditanggulangi dengan baik akan dapat menimbulkan dampak lanjutan terhadap komponen lingkungan lain seperti komponen biologi maupun komponen sosial ekonomi dan sosial budaya.

4.3 Dampak Yang Timbul Pada Pekerjaan Konstruksi Dan Upaya Menanganinya

Pada suatu pekerjaan konstruksi perlu dipertimbangkan adanya dampak-dampak yang timbul akibat pekerjaan tersebut serta upaya untuk menanganinya.

Disesuaikan dengan jenis dan besaran pekerjaan konstruksi serta kondisi lingkungan di sekitar lokasi kegiatan, penentuan jenis dampak lingkungan yang
cemar dan teliti, atau melakukan analisis secara sederhana dengan memakai data sekunder.

Berdasarkan pengalaman selama ini berbagai dampak lingkungan yang dapat timbul pada pekerjaan konstruksi dan perlu diperhatikan cara penanganannya adalah sebagai berikut:

1. **Meningkatnya Pencemaran Udara dan Debu.**

 Dampak ini timbul karena pengoperasian alat-alat berat untuk pekerjaan konstruksi seperti saat pembersihan dan pemeliharaan lahan perkebunan, pengangkutan tanah dan material bangunan, pekerjaan piling, khususnya tiang pancang, pekerjaan badan jalan dan perkerasan jalan, serta pekerjaan struktur bangunan.

 Indikator dampak yang timbul dapat mengacu pada keterlaluan baku mutu udara atau adanya tanggapan dan keluhan masyarakat akan timbulnya dampak tersebut.

 Upaya penanganan dampak dapat dilakukan langsung pada sumber dampak itu sendiri atau pengelolaan terhadap lingkungan yang terkena dampak seperti:

 a. Pengaturan kegiatan pelaksanaan konstruksi yang sesuai dengan kondisi setempat, seperti pemasangan base camp yang jauh dari lokasi pemukiman, pengangkutan material dan pelaksanaan pekerjaan pada siang hari.

 b. Memakai metode konstruksi yang sesuai dengan kondisi lingkungan, seperti mematangkan bore pile untuk lokasi disekitar permukiman.

 c. Pemantauan secara berkala untuk pekerjaan tanah yang banyak menimbun debu.

2. **Terjadinya erosi dan longsoran tanah serta genangan air.**

 Dampak ini dapat timbul akibat kegiatan pembersihan dan pemeliharaan lahan serta pekerjaan tanah termasuk pengelolaan query, yang menyebabkan permukaan lapisan atas tanah terbuka dan rawan erosi, serta timbulnya longsoran tanah yang dapat mengganggu sistem drainase yang ada, serta mengganggu estetika lingkungan disekitar kegiatan.

 Indikator dampak dapat secara visual dilapangkan, dan penanganannya dapat dilakukan antara lain:

 a. Pengaturan pelaksanaan pekerjaan yang memadai sehingga tidak merusak atau menyumbat saluran-saluran yang ada.

 b. Perkuat tebing yang timbul akibat perkerjaan konstruksi.
3. Percemaran kualitas air.

Dampak ini timbul akibat pekerjaan tanah dapat yang menyebabkan erosi tanah atau pekerjaan konstruksi lainnya yang membunuh atau mengalirkan limbah ke badan air sehingga kadar pencemaran di air tersebut meningkat.

Indikator dampak dapat dilihat dari warna dan bau air di bagian bumi kegiatan serta hasil analisis kegiatan air / mutu air serta adanya keluhan masyarakat.

Upaya penanganan dampak ini dapat dilakukan antara lain:

a. Pembuatan kolam pengendap sementara, sebelum air dari kegiatan dialirkan ke badan air.

b. Metode pelaksanaan konstruksi yang memadai.

c. Mengelola limbah yang baik dari kegiatan bahan camp dan bengkel.

Dampak ini timbul akibat pekerjaan pengangkutan tanah dan material bangunan yang melalui jalan umum serta pembuangan dan pematangan lahan serta pekerjaan tanah yang berada disekitar prasarana dan utilitas umum tersebut.

Indikator dampak dapat dilihat dari kerusakan prasarana jalan dan utilitas umum yang dapat mengganggu kefungsian utilitas umum tersebut, serta keluhan masyarakat disekitar lokasi kegiatan.

Upaya penanganan dampak yang timbul tersebut antara lain dengan cara:

a. Memberi bantuan segera kepada pemilik prasarana jalan atau utilitas umum yang rusak.

b. Meminta agar lebih dahulu utilitas umum yang terdapat dilokasi kegiatan
 ketempat yang aman.

5. Gangguan Lalu Lintas.

Dampak ini timbul akibat pekerjaan pengangkutan tanah dan material bangunan serta pelaksanaan pekerjaan yang terletak disekitar / berada di tepi prasarana jalan umum, yang lalu lintasnya tidak boleh terhenti oleh pekerjaan konstruksi.

Indikator dampak dapat dilihat dari adanya kemacetan lalulintas di sekitar lokasi kegiatan dan tanggapan negatif dari masyarakat disekitarnya.

Upaya penanganan dampak tersebut dapat dilakukan antara lain:

a. Pengaturan pelaksanaan pekerjaan yang baik dengan memberi prioritas
 pada kelancaran arus lalulintas.
b. Pengaturan waktu pengangkutan tanah dan material bangunan pada saat tidak jam sibuk.

c. Pembuatan rambu lalulintas dan pengaturan lalulintas di sekitar lokasi kegiatan.

d. Menggunakan metode konstruksi yang sesuai dengan kondisi lingkungan setempat.

Dampak ini timbul akibat pekerjaan pembersihan dan perataan tanah serta pekerjaan tanah terutama pada lokasi-lokasi yang mempunyai kondisi biologi yang masih alami, seperti hutan.

Indikator dampak dapat dilihat dari jenis dan jumlah tanaman yang ditebang, khususnya jenis-jenis tanaman langka dan dilestarikan serta adanya reaksi masyarakat.

Upaya penanganan dampak tersebut dapat dilakukan antara lain:

a. Pengaturan pelaksanaan pekerjaan yang memadai.

b. Penanaman kembali jenis-jenis pohon yang ditebang disekitar lokasi kegiatan.

Selain dampak primer tersebut diatas masih dampak-dampak sekunder akibat pekerjaan konstruksi yang perlu mendapat perhatian bagi pelaksana proyek, seperti:

1. Terjadinya interaksi sosial (positif / negatif) antara penduduk setempat dengan para pekerja pendatang dari luar daerah.

2. Dapat meningkatkan peluang kerja dan kesempatan berusaha pada masyarakat setempat, serta meningkatkan kegiatan ekonomi masyarakat.
BAB 5
SOSIAL BUDAYA DAN HUBUNGAN MASYARAKAT

5.1 Mengenali Sosial Budaya

Kebudayaan dalam arti luas, menurut A.L. Kroeber dan Clyde Kluckhohn, adalah keseluruhan hasil perbuat manusiakan yang bersumber pada kemauan, pemikiran, dan perasaannya. Karena jangkauannya begitu luas, maka Ernst Cassier membaginya ke dalam lima aspek yang meliputi: kehidupan spiritual, bahasa, dan kesusasteraan, kesenian, sejarah, dan ilmu pengetahuan. Studi tentang kebudayaan berarti studi dari tingkah laku manusia. Tingkah laku manusia dalam cahaya study budaya dapat dilukiskan sebagai kerja, kata, dan bicara. Tiga aktivitas itu disebut gerakan dasar, karena sesuai dengan tiga syarat yang menguasai eksistensi manusia di dunia ini.

Apabila kita jelajahi wilayah nusantara sampai masuk ke pedalaman masih primitif maupun sudah menjadi perkampungan atau pedesaan yang sudah cukup maju, masih dapat kita jumpai adat istiadat maupun budaya yang baik dan perlu dilestarikan dan dijunjung tinggi nilai nilai luhurnya yang selanjutnya dapat dipergunakan sebagai potensi strategis untuk mengimplementasikan program-program pembangunan. Dalam hal ini dilindungi UU No. 22 tahun 1999, tentang:
Pemerintahan Daerah, pasal 111 ayat (2) tertulis : Peraturan Daerah, sebagaimana dimaksud pada ayat (1), wajib mengakui dan menghormati hak, asal-usul dan adat istiadat desa.

Contoh adat istiadat atau budaya yang masih lestari dan memungkinkan dapat dipakai sebagai media untuk hubungan masyarakat antara lain:

a. Propinsi Sumatera Barat

Masyarakat sudah memiliki tatanan sistem pemerintahan dusun desa yang khas dengan "dusun nagarinya", dengan mekanisme pengambilan keputusan dengan cara musyawarah warga masyarakat termasuk tokoh-tokoh Adat Minang (Ninik-Mamak) ikut terlibat memberikan saran dan petunjuk kepada masyarakat.

b. Propinsi Nagroe Aceh Darussalam

Dengan keistimewaannya sebagai Daerah dengan etnik khusus yang sangat menonjol adalah adanya amanat untuk menerapkan syariat Islam di wilayahnya. Sehubungan dengan itu semua kegiatan pelaksanaan pembangunan perlu selalu mempertimbangkan situasi dan kondisi masyarakat yang menerapkan syariah Islam.

c. Propinsi Lampung

Propinsi Lampung memiliki keunikan mengingat penduduk propinsi ini sebagian besar adalah Transmigran yang berasal dari luar Lampung, sehingga memiliki keanekaragaman budaya, adat istiadat dan interaksi sosial yang dinamis dengan masyarakat Lampung asli. Tentunya ini akan memberikan corak tersendiri yang harus dipahami pelaku pelaksanaan pembangunan.

d. Pulau Kalimantan

Dilingkungan Pulau Kalimantan dalam hal ini diambil contoh adat istiadat Suku Dayak, masih dilestarikan sebagai suatu sosial budaya yang baik sekali untuk media mengenali sosial budayanya.

1. Hubungan Sosial dalam Kesatuan Hidup Bersama

Dengan adanya kesatuan hidup yang terdapat pada masyarakat suku-suku ini berarti salah satu perkembangan masyarakat yang walaupun sederhana, telah menunjukkan bahwa antara sesama terjalin suatu pergaulan hidup yang tertali temali yang saling membantu satu sama lain, serta ingin meneruskan hidup bersama di dalam satu masyarakat. Kerjasama yang baik antara
anggota masyarakat merupakan suatu kehidupan yang rukun dan damai serta tahu lidung-melindungi dalam segala kesulitan.
Dengan demikian semangat gotong-royong, rasa persatuan dan kesatuan masyarakat masih terjaga dengan baik.

2. Musyawarah Mufakat

Selain daripada jiwa gotong royong, musyawarah merupakan unsur sosial yang penting dalam masyarakat ini. Keputusan-keputusan yang diambil dalam rapat-rapat tidak didasarkan atas suatu majoritas, tetapi oleh seluruh anggota masyarakat yang hadir dalam rapat tersebut.

Setiap masalah yang akan dibicarakan dihadiri oleh seluruh penduduk, sedang yang akan dibicarakan mula-mula bergantung pada persoalannya, kalau persoalan itu berhubungan dengan pemerintahan, maka yang akan berbicara yang pertama adalah Kepala Kampung atau petinggi untuk mempertimbangkan.

Demikian juga kalau masalah itu lainnya mungkin soal adat, keputusan-keputusan yang sudah diambil dalam musyawarah itu disampaikan resmi kepada kepala kecamatan kelurahan yang menjelaskan pula kepada keluarganya masing-masing walaupun sesungguhnya mereka ada hadir disaat musyawarah itu. Kalau ada persoalan yang datangnya dari penduduk, maka masalah itu disampaikan kepada Kepala Adat.

e. Propinsi Bali

Dengan sistem “Subak” telah dilegalisasi melalui Peraturan Daerah Propinsi Bali tentang Irigasi Daerah Propinsi Bali yang didalamnya tentang pengaturan dan larangan-larangan yang harus dipatuhi.

Selain secara tertulis, sebenarnya adat istiadat yang dilandasi oleh keyakinan dalam beragama lebih mengikat karena sadar apa yang dilakukan, baik atau buruk akan selalu diketahui Tuhan Yang Maha Esa.
5.2 Azas Legalitas Pedesaan

Selain mengenali sosial budaya masyarakat, ada azas legalitas yang perlu dipahami oleh para pelaku pelaksana langsung pembangunan yang dipastikan akan melintasi atau lokasinya akan bersinggungan dan berada di pedesaan.

Adapun legalitas dimaksud adalah:

Berdasarkan UU No. 22 : 1999, tentang : Pemerintahan Daerah, Bab XI : Desa, menjelaskan sebagai berikut:

Pasal 99

Kewenangan Desa mencakup:

a. Kewenangan yang sudah ada berdasarkan hak asasi-busul Desa.
b. Kewenangan yang oleh peraturan perundang-undangan yang berlaku belum dilaksanakan oleh Daerah dan Pemerintah dan
c. Tugas Pembantuan dari Pemerintah, Pemerintah Propinsi, dan / atau Pemerintah Kabupaten

Pasal 100, UU No. 22 tahun 1999, mengarangakan bahwa:

Tugas Pembantuan dari Pemerintah, Pemerintah Propinsi dan atau Pemerintah Kabupaten kepada Desa diserahkan dengan:

⇒ Pembiayaan, berarti ada biaya yang dapat dikelola oleh Pemerintah Desa
⇒ Sarana dan prasarana antara lain dapat diartikan memberikan atau meminjamkan sarana dan prasarana termasuk peralatan misalnya mesin gilas.
⇒ Sumber daya manusia, yaitu SDM sebagai pembimbing atau fasilitator yang mampu membina agar masyarakat mampu melakukan pekerjaan jalan yang dibimbing melalui tugas pembantuan.

Dengan adanya tugas pembantuan kepada Pemerintah Desa, diharapkan dapat meningkat tenaga kerja, dapat memberikan penghasilan. Para pedagang / usaha di desa ada pembelinya, selanjutnya dapat memberikan kontribusi peningkatan kesejahteraan masyarakat.

Disinilah letaknya nilai tambah adanya tugas pembantuan kepada Pemerintah Desa, dan diharapkan terjadinya infestasi diserap potensi desa setempat dan terjadilah dampak ganda berganda (multiplier effect).

Pasal 110

Pemerintah Kabupaten dan atau pihak ketiga yang merencanakan pembangunan bagian wilayah Desa menjadi wilayah permukiman, industri dan
jasa wajib mengikutsertakan Pemerintah Desa dan Badan Perwakilan Desa dalam perencanaan, pelaksanaan dan pengawasannya.

Selain UU No. 22 tahun 1999, ada lagi undang-undang No. 18 tahun 1999, tentang : Jasa Konstruksi yang memberikan amanat kepada masyarakat untuk ikut aktif melakukan pengawasan seperti tertuang dalam,

Pasal 29, berbunyi : Masyarakat berhak untuk :

a. Melakukan pengawasan untuk mewujudkan tertib pelaksanaan jasa konstruksi,

b. Memperoleh penggantian yang layak atas kerugian yang dialami secara langsung sebagai akibat penyelenggaraan pekerjaan konstruksi.

Pasal 30, berbunyi : Masyarakat berkewajiban :

a. Menjaga ketertiban dan memenuhi keteraturan yang berlaku di bidang pelaksanaan jasa konstruksi

b. Turut mencegah terjadinya pekerjaan konstruksi yang membahayakan kepentingan umum

Kemudian sesuai dengan :

a. Era globalisasi yang didukung dengan kemajuan teknologi informasi yang canggih, dapat menerobos waktu dan wilayah Negara sampai pedesaan yang tidak bisa dibendung dan dibatasi, sehingga akan muncul kecenderungan perdana paradigma yang dinamis yang lebih berorientasi pada perdanaan kerjasama dan kompetisi yang nyata, yang kadang-kadang terlalat kebajikan.

Kecenderungan-kecenderungan yang sangat mungkin terjadi terutama transformasi perekonomian dunia akan bergeser dari basis ekonomi industri ke basis ekonomi informasi yang didukung pasar bebas atas barang dan jasa secara global yang mengakibatkan adanya ransangan konsumtif berlebihan.

b. Tuntutan masyarakat umum menghendaki pemerintahan yang efektif dan efisien, demokrasi, transparan, bersih, berwibawa, serta profesional dengan fungsi utama melakukan pelayanan masyarakat, fasilitas dan dinamisasi (enabler) dan terbangunnya hubungan interaktif dalam sistem pemerintahan, pembangunan dan kemasyarakatan.

Maka berdasarkan pengenalan sosial budaya dan legalitas atas keberadaan dan keterlibatan masyarakat diharapkan pada pelaku pelaksana pembangunan yang bersinggungan langsung dengan masyarakat dapat
beradaptasi dan melakukan pendekatan sesuai tradisi, adat istiadat dan sosial budaya masyarakat setempat. Dalam menghadapi masyarakat pedesaan antara lain sering ditemui adanya kegiatan seremonial atau upacara-upacara, ada tokoh-tokoh informal yang sangat disegani dan dijunjung tinggi kehormatannya dan lain sebagainya.

Para pelaku pembangunan tidak boleh apriori terhadap situasi dan kondisi seperti tersebut diatas, malah sebaliknya mungkin sekali seremonial dan upacara-upacara tersebut dapat dimanfaatkan untuk kelancaran pelaksanaan pembangunan.

Masyarakat dapat didorong untuk bisa melakukan sesuatu yang didalamnya telah masuk kepentingan untuk kelancaran pelaksanaan pembangunan, sehingga mereka bisa melakukan suatu aktivitas yang sekaligus bernilai ganda, permainan atau segala bagian pemenan kebutuhan untuk services, sekaligus juga memberikan peluang bagi diri sendiri untuk mengorganisir dan menjadikannya hidupnya. (Sekarang permainanpun dipakai, seperti misalnya tim kesenian mereka “bersenang-senang”, sekaligus dapat uang bagi yang profesional tentunya).

Bagaimana kita bisa merencanakan upacara yang selaras dengan pembangunan. Dan akhirnya : Apa yang kita lakukan untuk merubah upacara ini menjadi bagian tak terlepas dari proses modernisasi?

Silahkan, kembangkan sesuai kapasitas kemampuan anda !

5.3 Penanganan Keamanan Lingkungan Proyek

5.3.1 Kelembagaan Keamanan

Secara kelembagaan penanganan keamanan lingkungan proyek sebaiknya dirintegrasikan dengan kelembagaan keamanan yang sudah ada yaitu:
- Tingkat Kecamatan ada: Polisi Sektor (Polsek), Komando Rayon Militer sering disebut: Koramil dan ada Markas Hansip Kecamatan.
- Tingkat Kelurahan / Desa ada: Hansip (Pertahanan Sipil) Desa atau Kamtibmas (Keamanan Ketertiban Masyarakat) untuk proyek besar - kadang-kadang perlu pengamanan yang lebih kuat lagi yaitu tingkat Kabupaten dan Kota ada yang disebut: Polisi Resort (Polres), Kodim (Komando Distrik Militer).

Pengintegrasian keamanan dari lembaga keamanan tersebut diatas perlu dilakukan dengan cara mencari informasi secara personal aproach atau dilakukan secara prosedural formal sehingga mudah menemukan kesepakatan-kesepakatan yang saling dapat membantu.

5.3.2 Keamanan Informal

Akhir-akhir ini muncul suatu fenomena ukuran tawaran jasa keamanan dari sekelompok orang tertentu yang juga peluang dimanfaatkan keberadaannya. Kelompok jasa keamanan ini biasanya bermain pada lokasi wilayah penguasaannya yang dibentuk tidak resmi tetapi sangat kuat komitmennya antar kelompok, sehingga saling menjaga dan saling mengawasi batas-batas wilayahnya.

Sebagai pelaksana pembangunan perlu memperhatikan hal ini karena apabila keterbatasan dapat mengganggu kelancaran pelaksanaan pembangunan.
BAB 6
ASPEK-ASPEK PENGADAAN TANAH

6.1 Umum

Pembangunan Prasarana dan Sarana Pengairan menelurkan bidang-bidang tanah yang cukup luas dan karena itu pengadaannya perlu dilakukan dengan sebaik-baiknya. Pelaksanaan pengadaan tanah dilakukan dengan memperhatikan peran tanah dalam kehidupan manusia dan prinsip pemanfaatan terhadap hak-hak yang sah atas tanah. Persoalan tentang tanah dalam kehidupan manusia mempunyai arti yang sangat penting sekali oleh karena sebagian besar kehidupannya bergantung pada tanah. Tanah adalah tempat pemukiman manusia disamping sebagai sumber kehidupan bagi mereka yang mencari naikah melalui usaha tani dan pada akhirnya tanah pulalah yang dijadikan tempat bersemayam terakhir bagi orang yang meninggal dunia.

Sangat sering terdengar keluhan bahwa Panitia Penaksir Ganti Rugi selalu memihak kepada pihak yang membebaskan tanah apalagi mereka itu berasal dari lingkungan penguasa atau pengusahanya. Rakyat sepetinya harus menerima tanpa turut serta dalam perundingan, hal yang demikianlah yang menimbulkan keresahan rakyat yang bisa berekor panjang. Seharusnya dalam pembebasan tanah ini azas "Musyawarah" dijadikan landasan dan kalau perlu dalam setiap pembicaraan beberapa wakil rakyat diwajibkan turut serta.

Ganti kerugian yang diberikan kepada para pemilik tanah yang terkena pembangunan Prasarana dan Sarana Pengairan adalah penggantian atas nilai tanah berikut bangunan, tanaman dan benda lain yang terkait dengan tanah harus pula diperhatikan pola budaya dan lapangan kehidupan para pemilik tanah yang tanah usahanya terkena pembangunan Prasarana dan Sarana Pengairan. Pelaksana pembangunan Prasarana dan Sarana Pengairan harus memikirkan kompensasi
kerugian psikologis kepada penduduk pemilik tanah yang terkena bangunan Prasarana dan Sarana Pengairan.

Bentuk ganti rugi:

a. Uang
b. Tanah pengganti
c. Permukiman kembali
d. Prasarana dan Sarana permukiman yang memadai.

Gagal memperhatikan hal ini membuat tanah itu bercacat dan dapat menimbulkan keresahan diantara penduduk. Hendaknya dalam memberikan ganti kerugian diperhatikan aspek mata pencaharian ini. Kalau mungkin rakyat harus mendapatkan alternatif mata pencaharian yang lebih menguntungkan mereka paling tidak harus tidak lebih buruk dari keadaan mereka semula, kalau hal ini terjadi rakyat akan merasa tidak tertal dirugikan dan dengan demikian akan ikhlas melepaskan tanahnya.

Bilamana tanah itu diambil begitu saja dan dipergunakan untuk keperluan pembangunan prasarana dan sarana pengairan jelas kita akan mengorbankan hak milik atas tanah warga masyarakat yang seharusnya dilindungi. Akan tetapi bila tanah tersebut tidak diserahkan oleh pemiliknya dengan sukarela setelah menerima ganti kerugian yang wajar, maka usaha-usaha pembangunan akan tertunda atau bahkan batal. Praktek pengadaan tanah menunjukkan bahwa kalau ada sebidang tanah yang diperlukan untuk kepentingan pembangunan maka mau tidak mau usaha tersebut harus berhasil. Dewasa ini pembangunan sering dijadikan kambing hitam yang dapat menimbulkan kesan bahwa segala sesuatunya akan menjadi halal
bilamana dilakukan untuk dan demi pembangunan sekalipun hal tersebut dilakukan dengan melawan hukum. Kalau hal ini terjadi maka pengadaan tanah bagi pembangunan untuk kepentingan umum dapat menyengsarakan pemilik tanah dan masyarakat sekitarnya, padahal pembangunan tersebut khususnya pembangunan prasarana dan sarana pengairan bertujuan untuk meningkatkan kesejahteraan masyarakat.

6.2 Status Hukum Atas Tanah

Tanah dan hak-haknya adalah suatu kekayaan yang mempunyai nilai sangat tingi bagi sebuah negara agraris seperti Republik Indonesia. Biaya dan status kedudukan menurut hukum dikenal 3 status hukum atas tanah yaitu:

1. Tanah negara yang diatur Undang-undang No. 9 Tahun 1960 (UUPA). Tanah negara disebut juga tanah negara bebas (land vrij Duits) yang dikuasai oleh Pemerintah baik Pusat maupun Daerah.

2. Tanah hak yang diatur juga dalam Undang-undang No. 5 Tahun 1960 (UUPA). Tanah hak ini dikuasai oleh pemiliknya dengan berbagai hak atas tanah, misalnya:
 - Hak milik (HM)
 - Hak Guna Usaha (HGU)
 - Hak Guna Bangunan (HGB)
 - Hak Pakai Haji
 - Hak Pengadaan (HP)
 - Hak Tanah Ada

3. Tanah kawasan hutan yang diatur dalam Undang-undang No. 41 Tahun 1990 tentang kehutanan sebagai pengganti Undang-undang No. 5 tahun 1967. tanah kawasan hutan ini dikuasai oleh instansi Departemen Kehutanan dan Perkebunan baik Pusat maupun Daerah dan oleh BUMN (Perum Perhutani) dan PT. Inhutani dengan surat-surat pemilikan berupa Surat Keputusan Menteri Kehutanan dan Perkebunan.

6.3 Pengadaan Tanah

6.3.1 Sebelum Pengadaan Tanah

Pada daerah-daerah tertentu ada kalanya koordinasi antara berbagai instansi khususnya dengan Pemerintah Daerah kurang kuat sehingga rencana-rencana pengadaan tanah sebagai landasan pelaksanaan

Pengorganisasian pengadaan tanah pada unit kerja pelaksanaan (proyek) belum nampak mandiri dalam arti masih kurang tindih kegiatan-nya dengan tugas-tugas lainnya. Reorganisasi untuk pengadaan tanah ini perlu dilakukan sangat bersama dana untuk pengadaan tanah sedangkan waktu penyelesaian yang tetap sangat sempit dan tugas-tugasnya bersifat kordinatif antar instansi serta berhadapan langsung dengan masyarakat yang pada umumnya telah mempunyai masalah-masalah sosial tertentu pula. Definisi pula uraian tugas dan kegiatan inti pengadaan tanah ini belum terjabar secara limitatif sesuai dengan situasi dan kondisi setempat serta adat istiadat pada masyarakat yang terkena proyek.

Adanya berbagai kepentingan yang terkandang bertentangan satu samal lain dalam pengadaan tanah untuk kepentingan pembangunan prasarana dan sarana pengairan. Misalnya, disatu pihak pembangunan prasarana dan sarana pengairan memerlukan pengadaan tanah yang mendesak sementara dipihak lain memegang hak atas tanah yang akan dibebaskan memerlukan tanah tersebut untuk tempat pemukiman dan sebagai sandaran utama dalam mencari nafkah. Dipihak-pihak yang mencari nafkah, yaitu penggarap, buruh tani dan keluarga.

Masih kurangnya pengetahuan masyarakat tentang kepentingan pembangunan baik dilihat dari kepentingan nasional, regional maupun bagi
kepentingan langsung terhadap masyarakat, demikian juga dengan kurangnya pendekatan dan keterbukaan tentang prosedur tentang pengadaan tanah sehingga sering terjadi kesalahanpahaman yang berlanjut-larut yang terkadang sulit diselesaikan.

Proses pengadaan tanah baik secara fisik maupun administratif memerlukan prosedur yang komplek dan banyak melibatkan instansi-instansi sehingga memakan memerlukan waktu yang lama, usaha dan biaya besar. Banyaknya instansi yang terkait dengan upaya pengadaan tanah memerlukan sinkronisasi dan keterpaduan, baik dalam mengatur jadwal kena maupun dalam melaksanakan kegiatan itu sendiri, sehingga pengadaan tanah tidak mudah dilaksanakan tanpa dengan perencanaan yang matang dan keterpaduan yang tinggi.

Adanya variasi dan perbedaan nilai nyata tanah, tanaman tumbuh, bangunan dan benda-benda yang ada di atas tanah tersebut (terhadap tempat dan waktu) menyebabkan kesulitan memperkecil nilai kompensasi tanah kasus demi kasus sesuai dengan tingkat kompensasi yang memadai, bijaksana dan adil. Terutama dana untuk membebaskan tanah dengan tingkat kompensasi yang memadai dan menyeluruh, sehingga terkadang pembatasannya terpaksa ditangani secara parsial. Hal semacam ini jika ditangani dengan baik bisa membuka peluang masalah-masalah sosial psikologi yang menyulitkan pada pase pembangunan berikutnya.

Keberadaan tanah, terutama pada daerah-daerah yang sudah lama berkembang sering berkaitan secara tradisional, kultural dan sakral penduduk setempat. Dalam hal seperti ini, tanah mengandung nilai emosional dan psikologis yang tidak mudah dikonversikan dalam bentuk kompensasi material.

6.3.2 Pada Saat Pengadaan Tanah

Meskipun tahapan pelaksanaan pengadaan tanah tidak harus sama dari suatu daerah ke daerah lainnya, namun secara umum uraian kegiatan yang harus dilaksanakan tidak berbeda. Uraian kegiatan yang dilaksanakan oleh Panitia Pengadaan Tanah sebagaimana dimaksudkan dalam Keputusan Presiden RI No. 55 Tahun 1993 juncto Peraturan Menteri Negara Agraria No. 1 Tahun 1994 adalah sebagai berikut:
Pelatihan Pelaksana Bangunan Irigasi Sistem Manajemen K3 dan Pengendalian Lingkungan

a. Penyuluhan tentang rencana dan tujuan pembebasan tanah tersebut kepada anggota masyarakat pemegang hak atas tanah yang akan dibebaskan.

b. Penelitian dan inventarisasi atas tanah, bangunan, tanaman tumbuh serta benda-benda lain yang berkaitan dengan tanah yang hak atasnya akan dilepaskan.

c. Penelitian mengenai status hukum pemilikan tanah yang akan dibebaskan beserta bukti-bukti hukum yang mendasari status pemilikan tersebut.

d. Penaksiran dan pengusulan kompensasi atas tanah, tanaman tumbuh, bangunan dan benda-benda yang berkaitan dengan tanah yang akan dibebaskan tersebut.

e. Pelaksanaan musyawarah dengan para pemegang hak atas tanah dan instansi pemerintah yang memerlukan pembebasan tanah dalam hal penetapan bentuk, wujud maupun besarnya kompensasi yang akan diberikan sehubungan dengan penyerahan hak atas tanah tersebut.

f. Pelaksanaan pembayaran kompensasi sesuai dengan hasil musyawarah kepada pemegang hak atas tanah, bangunan, tanaman dan benda-benda lain yang berkaitan dengan tanah tersebut.

g. Pembuatan Berita Acara Pelepasan / Penyerahan Hak Atas Tanah.

Untuk mengatasi masalah perbedaan permasalahan pengadaan tanah dari suatu daerah dengan daerah lainnya, maka bentuk kompensasi dapat dilaksanakan melalui berbagai kebijaksanaan:

a. Pemberian kompensasi dalam bentuk uang tunai

b. Pemberian tanah pengganti yang sepadan dengan tanah yang haknya dilepaskan.

c. Penugasan kembali ketempat-tempat yang layak tanpa mengakibatkan kerugian bagi pemegang hak atas tanah yang dibebaskan.

d. Pemberian kompensasi dalam bentuk gabungan dari dua atau lebih cara seperti tersebut diatas.

e. Pemberian kompensasi dalam bentuk lain yang disepakati oleh pihak-pihak yang bersangkutan yang bukan pemilik tanah, misalnya dalam wujud gantji bangunan, ganti fasilitas umum atau pemberian bahan-bahan bangunan, bantuan fasilitas transportasi dan sebagainya.
f. Penggantian bidang tanah yang dikuasai dengan hak ulayat dalam bentuk pembangunan fasilitas umum atau bentuk-bentuk lain yang bermanfaat bagi masyarakat.

6.3.3 Sesudah Pengadaan Tanah

Tanah-tanah yang telah dikuasai baik dengan cara permohonan hak, pelepasan hak atas tanah, hibah, tukar menukar dan lain sebagainya, perlu dilakukan upaya pengamanan agar supaya tidak dikuasai pihak lain secara tidak sah atau mencegah terjadinya penggunaan tanah oleh pihak lain yang tidak bertanggung jawab. Pengamanan tanah, terutama bagi kepentingan suatu instansi pemerintah sebagaimana disebut dihukum maksimal 3 hal yaitu:

6.3.4 Pemanfaatan Tanah

Untuk mencegah terjadinya pengusahaan tanah yang telah dilepas hak atas tanahnya dari pemiliknya asal oleh pihak-pihak yang tidak bertanggung jawab, langkah yang paling efektif adalah segera memanfaatkan tanah-tanah tersebut untuk kegiatan konstruksi dan kegiatan penunjang konstruksi. Keterlambatan kegiatan konstruksi karena alasan teknis maupun finansial akan mengakibatkan adanya terjadinya penyeroebotan tanah-tanah yang telah dilepas hak atas tanahnya oleh pemiliknya semula maupun oleh pihak-pihak lain yang tidak bertanggung jawab.

6.3.5 Pengamanan Fisik

Yang dimaksud dengan pengamanan fisik atas tanah yang telah dilepas haknya adalah pengamanan atas tanah yang telah dikuasai dan dipergunakan baik areal tanah yang telah dimanfaatkan ataupun yang belum dimanfaatkan dengan cara lain:

a. Memasang pagar tembok atau kawat berduri atau pagar tanaman hidup
b. Mendirikan patok-patok beton dengan ukuran tertentu dan jarak yang tertentu
c. Membangun papan nama dengan ukuran yang telah ditentukan.

6.3.6 Pengamanan Yuridis

Yang dimaksud pengaman yuridis adalah melengkapi dokumen penguasaan tanah sebagaimana dimaksud dalam Peraturan Pemerintah No. 24 Tahun 1994 tentang Pendaftaran tanah, yaitu dengan pensertifikat tanah-tanah

6.4 Dasar Hukum dan Prosedur Pengadaan Tanah

6.4.1 Dasar Hukum

Cukup banyak dasar hukum yang dapat digunakan untuk melakukan pengadaan atau pembebasan tanah antara lain:

PERATURAN-PERATURAN PENGADAAN TANAH

TANAH KAWASAN HUTAN:
- UU No. 41 Tahun 1999
- KPTS Menteri Kehutanan No. 154/KPTS-I/94

TANAH HAK
- UU No. 20 Tahun 1961
- KEPPRES RI No. 55 Tahun 1993
- PMA No. 1 Tahun 1994
6.4.2 Prosedur Pengadaan Tanah

a. Pengadaan tanah untuk kepentingan umum

Yang dimaksud dengan pengadaan tanah untuk kepentingan umum adalah suatu kegiatan pembebasan tanah yang dilakukan oleh pemerintah untuk prasarana dan sarana umum yang nilai manfaat dan dampaknya untuk kepentingan masyarakat umum antara lain:

- Pembangunan jalan
- Pembangunan prasarana dan sarana pengairan
- Pembangunan gedung-gedung pemerintah atau gedung-gedung kepentingan umum tempat ibadah, gedung olahraga, kesenian dan lain-lainnya.

Prosedur pengadaan tanah, digambarkan pada matrik prosedur pengadaan tanah untuk Kepentingan Umum sebagai berikut:

Pengadaan Tanah untuk Kepentingan Umum

(Keppres RI No. 55 Tahun 1993)
b. Pengadaan Tanah di Kawasan Hutan
Tanah dikawasan hutan dikuasai oleh negara / pemerintah, dalam hal ini kewenangannya berada di Departemen Kehutanan dan Perkebunan.
Apabila antar unsur pemerintah saling membutuhkan atas tanah yang berada dalam kawasan hutan dapat ditempuh berkoordinasi dan konsultasi dengan Departemen Kehutanan dan Pemerintah Daerah dimana lokasi tanah yang akan dibebaskan berada.
Adapun tanah kawasan hutan berada pada kawasan:
1. Hutan konservasi
2. Hutan Lindung
3. Hutan Produksi

BAGAN ALIR

INTEGRASI AMDAL DALAM PROSES PENGEMBANGAN PROYEK
PROSES PENYUSUNAN AMDAL

DIAGRAM ALIR

<table>
<thead>
<tr>
<th>Informasi Proyek</th>
<th>JENIS DOKUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komponen kegiatan yang berpotensi menimbulkan dampak</td>
<td>- Korangka Aksi Analysis Dampak Lingkungan (KADAL)</td>
</tr>
<tr>
<td>Komponen kegiatan yang berpotensi terkena dampak</td>
<td>- Analisis Dampak</td>
</tr>
<tr>
<td>Prakiraan dan evaluasi dampak</td>
<td>- Lingkungan (ANDAL)</td>
</tr>
<tr>
<td>Rumusan penanganan dampak</td>
<td>- Rencana Pengelolaan Lingkungan (RPL) dan Rencana Penanganan Lingkungan (RPLP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pelaksanaan Pengelolaan Lingkungan (RKL) dan Pemantauan Lingkungan</th>
<th>- Bulatkan tata dan syarat-syarat pelaksanaan yang memerlukan rencana pengelolaan dan pemantauan lingkungan yang dituangkan dalam dokumen kontrak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perbaikan RKL & RPL</td>
<td>- Standar operasi dan pemeliharaan sarana dan prasarana pengelolaan lingkungan</td>
</tr>
<tr>
<td>Penilaian hasil pemantauan</td>
<td>- Tata cara penilaian hasil pelaksanaan RKL dan RPL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memadeni</th>
<th>- Dokumen RKL dan RPL yang telah dimanfaatkan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ya</td>
<td>- Dokumen pelaksanaan pemantauan lingkungan</td>
</tr>
<tr>
<td>Tidak</td>
<td>- Dokumen pelaksanaan pemantauan lingkungan</td>
</tr>
</tbody>
</table>

Jika dampak negatif sesuai mungkin dengan manfaat proyek sesuai yang direncanakan, benihkan KL dan PL sampai dampak negatif sesuai mungkin dengan manfaat proyek sesuai yang direncanakan.
I. BAKU MUTU AIR PADA SUMBER AIR

Baku Mutu Air Golongan A

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Saturan</th>
<th>Maksimum Yang Dianjurkan</th>
<th>Maksimum Yang Diperbolehkan</th>
<th>Metode Analisa</th>
<th>Peralatan</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FTSKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Temperatur</td>
<td>°C</td>
<td>Temperatur air normal</td>
<td>Temperatur air normal</td>
<td>Pengukuran</td>
<td>Termometer</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Warna</td>
<td>Unit</td>
<td>PiCo Standard</td>
<td>5</td>
<td>50</td>
<td>Kolorimetri spektrofotometrik</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bau</td>
<td>-</td>
<td>Tidak berbau</td>
<td>Tidak berbau</td>
<td>Organoleptik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rasa</td>
<td>-</td>
<td>Tidak berbau</td>
<td>Tidak berbau</td>
<td>Organoleptik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Kekeruhan</td>
<td>Mg/l</td>
<td>5</td>
<td>25</td>
<td>Turbidimetrik</td>
<td>Turbidimetr</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Residu terlarut</td>
<td>Mg/l</td>
<td>500</td>
<td>1500</td>
<td>Gravimetrik</td>
<td></td>
<td>Timbangan analitik dan kertas saring 0,45</td>
</tr>
</tbody>
</table>

KIMIA

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Saturan</th>
<th>Maksimum Yang Dianjurkan</th>
<th>Maksimum Yang Diperbolehkan</th>
<th>Metode Analisa</th>
<th>Peralatan</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>pH</td>
<td></td>
<td>6,5 - 8,5</td>
<td>6,5 - 7,5</td>
<td>Potensiometrik</td>
<td>pH meter</td>
<td>Nilai antara "range"</td>
</tr>
<tr>
<td>2</td>
<td>Kalium</td>
<td>mg/l</td>
<td>75</td>
<td>200</td>
<td>- Trimektri - EDTA</td>
<td>- Buret</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td>- AAS (Atomic Absorption Spectrophoto meter)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Magnesium (Mg)</td>
<td>mg/l</td>
<td>30</td>
<td>150</td>
<td>- Trimektri - EDTA</td>
<td>- Buret</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td>- AAS (Atomic Absorption Spectrophoto meter)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Barium (Ba)</td>
<td>mg/l</td>
<td>0,05</td>
<td>0,05</td>
<td>Gravimetrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Besi (Fe)</td>
<td>mg/l</td>
<td>0,1</td>
<td>1</td>
<td>Spektrofotometrik</td>
<td>AAS</td>
<td>spektrofotometer</td>
</tr>
<tr>
<td>6</td>
<td>Mangan (Mn)</td>
<td>mg/l</td>
<td>0,05</td>
<td>0,5</td>
<td>Spektrofotometrik</td>
<td>AAS</td>
<td>spektrofotometer</td>
</tr>
<tr>
<td>7</td>
<td>Tembaga (Cu)</td>
<td>mg/l</td>
<td>Nilai</td>
<td>1</td>
<td>Spektrofotometrik</td>
<td>AAS</td>
<td>spektrofotometer</td>
</tr>
<tr>
<td>8</td>
<td>Seog (Zn)</td>
<td>mg/l</td>
<td>1</td>
<td>15</td>
<td>Spektrofotometrik</td>
<td>AAS</td>
<td>spektrofotometer</td>
</tr>
<tr>
<td>9</td>
<td>Krom (Cr)</td>
<td>mg/l</td>
<td>Nilai</td>
<td>0,05</td>
<td>Spektrofotometrik</td>
<td>AAS</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Kadmium (Cd)</td>
<td>mg/l</td>
<td>Nilai</td>
<td>0,01</td>
<td>Spektrofotometrik</td>
<td>AAS</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Raksa Total (Hg)</td>
<td>mg/l</td>
<td>0,0005</td>
<td>0,001</td>
<td>Spektrofotometrik</td>
<td>AAS</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Timbal (Pb)</td>
<td>mg/l</td>
<td>0,05</td>
<td>0,1</td>
<td>Spektrofotometrik</td>
<td>AAS</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Komponen</td>
<td>Satuan</td>
<td>Kadar Maksimum</td>
<td>Metode Analisis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Arsen (As)</td>
<td>mg/l</td>
<td>0.05</td>
<td>Spektrofotometrik, Serapan atom, Spektrofotometer, AAS, Spektrofotometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Selenium (Se)</td>
<td>mg/l</td>
<td>0.01</td>
<td>Spektrofotometrik, Serapan atom, AAS, Spektrofotometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Sianida (CN)</td>
<td>mg/l</td>
<td>0.05</td>
<td>Spektrofotometrik, Serapan atom, AAS, Spektrofotometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Sulfida (S)</td>
<td>mg/l</td>
<td>Nihil</td>
<td>Titrasi, Spektrometri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Fluorida (F)</td>
<td>mg/l</td>
<td>1.5</td>
<td>Spektrometri, Spektrofotometer, Minimum 0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Klorida (Cl)</td>
<td>mg/l</td>
<td>200 600</td>
<td>Titrasi, Buret</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Sulfat (SO4)</td>
<td>mg/l</td>
<td>200 400</td>
<td>Titrasi, Buret</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Amoniak bebas (NH3 – N)</td>
<td>mg/l</td>
<td>Nihil</td>
<td>Spektrofotometrik, Spektrofotometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Nitrat (NO3 – N)</td>
<td>mg/l</td>
<td>5 10</td>
<td>Spektrometri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Nitrit (NO2 – N)</td>
<td>mg/l</td>
<td>Nihil</td>
<td>Spektrometri, Spektrofotometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Nitrat permanganat</td>
<td>mg/l</td>
<td>10</td>
<td>Titrasi, Buret</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Senyawa aktif biru metilen</td>
<td>mg/l</td>
<td>Nihil 0.5</td>
<td>Spektrometri, Spektrofotometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Fenol</td>
<td>mg/l</td>
<td>0.002 0.022</td>
<td>Spektrometri, Spektrofotometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Misyak & Lensa</td>
<td>mg/l</td>
<td>Nihil</td>
<td>- Spektrometri, - Spektrometri, Infra merah, - Timbangan analitik, - Spektrofotometer IR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Karbon Kiloform ekstraksi</td>
<td>mg/l</td>
<td>0.04 0.5</td>
<td>Spektrometri, Spektrofotometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>PCB</td>
<td>mg/l</td>
<td>Nihil</td>
<td>Kromatografi - Kromatografi Gas (GC), HPLC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BAKTERIOLOGI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Coliform Group</td>
<td>MPN/100 mL</td>
<td>Nihil</td>
<td>MPN atau Filtrasi, Tabel MPN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kuman Parasitik</td>
<td>Nihil</td>
<td>Nihil</td>
<td>Mikroskopi, Mikroskop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kuman Patogeni</td>
<td>Nihil</td>
<td>Nihil</td>
<td>Kultur & Ilotasi, Seletif media</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADIOAKTIVITAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>-------</td>
<td>--------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Aktivitas beta total</td>
<td>pCl</td>
<td>100</td>
<td>β counting</td>
<td>Geiger – Muller Counter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Strontium – 90</td>
<td>pCl</td>
<td>2</td>
<td>β counting</td>
<td>Geiger – Muller Counter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Radium –226</td>
<td>pCl</td>
<td>2</td>
<td>α counting</td>
<td>α counter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PESTISIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Pestisida</td>
<td>mg/l</td>
<td>Nihil</td>
<td>Nihil</td>
<td>Kromatografi</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Kepmen. KLH No. 02/MENKLH/1988 tentang Penetapan Baku Mutu Lingkungan
Baku Mutu Air Golongan B

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Satuan</th>
<th>Maksimum Yang Dianjukan</th>
<th>Maksimum Yang Diperbolehkan</th>
<th>Metode Analisa</th>
<th>Peralatan</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Temperatur</td>
<td>°C</td>
<td>0 - 0</td>
<td>0 - 0</td>
<td>Pemusian</td>
<td>Termometer</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Residu terlarut</td>
<td>mg/l</td>
<td>400</td>
<td>1500</td>
<td>Gravimetrik</td>
<td>Timbangan analitik dan keras saring 0.45</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>pH</td>
<td></td>
<td>5 - 9</td>
<td>5 - 9</td>
<td>Potensiomtrik</td>
<td>pH meter</td>
<td>Nila antara ('range')</td>
</tr>
<tr>
<td>2.</td>
<td>Banium (Ba)</td>
<td>mg/l</td>
<td>Nilai</td>
<td>1</td>
<td>Spektrofotometrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td>3.</td>
<td>Besi terlarut(Fe)</td>
<td>mg/l</td>
<td>Nilai</td>
<td>5</td>
<td>Spektrofotometrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td>4.</td>
<td>Mangan terlarut(Mn)</td>
<td>mg/l</td>
<td>0.05</td>
<td>0.5</td>
<td>Spektrofotometrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td>5.</td>
<td>Tembaga (Cu)</td>
<td>mg/l</td>
<td>Nilai</td>
<td>1</td>
<td>Spektrofotometrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td>6.</td>
<td>Seng (Zn)</td>
<td>mg/l</td>
<td>Nilai</td>
<td>5</td>
<td>Spektrofotometrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td>7.</td>
<td>Krom hexavalen (Cr 6+)</td>
<td>mg/l</td>
<td>Nilai</td>
<td>0.05</td>
<td>Spektrofotometrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td>8.</td>
<td>Kadmium (Cd)</td>
<td>mg/l</td>
<td>Nilai</td>
<td>0.01</td>
<td>Spektrofotometrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td>9.</td>
<td>Niksa(Hg)</td>
<td>mg/l</td>
<td>0.0005</td>
<td>0.001</td>
<td>Spektrofotometrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td>10.</td>
<td>Timbul (Pb)</td>
<td>mg/l</td>
<td>0.05</td>
<td>0.1</td>
<td>Spektrofotometrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td>11.</td>
<td>Arus (As)</td>
<td>mg/l</td>
<td>Nilai</td>
<td>0.05</td>
<td>Spektrofotometrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td>12.</td>
<td>Selenium (Se)</td>
<td>mg/l</td>
<td>Nilai</td>
<td>0.01</td>
<td>Spektrofotometrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td>13.</td>
<td>Sianida (CN)</td>
<td>mg/l</td>
<td>Nilai</td>
<td>0.05</td>
<td>Spektrofotometrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td>14.</td>
<td>Sulfida (S)</td>
<td>mg/l</td>
<td>Nilai</td>
<td>Nihil</td>
<td>Titrimetrik</td>
<td>- Bureau</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td>15.</td>
<td>Fluorida (F)</td>
<td>mg/l</td>
<td>-</td>
<td>1.5</td>
<td>Spektrometrisk</td>
<td>Spektrofotometer</td>
<td>Minimum of 0.5</td>
</tr>
<tr>
<td>No.</td>
<td>Parameter</td>
<td>Kadar (mg/l)</td>
<td>Metode</td>
<td>Alat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Klorida (Cl)</td>
<td>200</td>
<td>600</td>
<td>Titrimetri, Buret</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Sulfat (SO₄)</td>
<td>200</td>
<td>400</td>
<td>Gravimetri, Spektrofotometri</td>
<td>Timbangan analitik, Spectrophotometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Amonial bebas (NH₃-N)</td>
<td>0.01</td>
<td>0.4</td>
<td>Spektrofotometri</td>
<td>Spectrophotometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Nitrat (NO₃-N)</td>
<td>5</td>
<td>10</td>
<td>Spektrofotometri</td>
<td>Spectrophotometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Nitrit (NO₂-N)</td>
<td>Nilanil</td>
<td>1</td>
<td>Spektrofotometri</td>
<td>Spectrophotometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Oksigen terasut (DO)</td>
<td>mg/l</td>
<td></td>
<td>Titrimetri, Potensiometri</td>
<td>Buret, DO meter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Kebutuhan Oksigen Biokimia (COD)</td>
<td>mg/l</td>
<td>6</td>
<td>Titrimetri, Spektrofotometri</td>
<td>Buret, DO meter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Kebutuhan Oksigen Kimia</td>
<td>mg/l</td>
<td>10</td>
<td>Titrimetri, Buret</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Senyawa asli biru metilen</td>
<td>mg/l</td>
<td>Nilanil</td>
<td>Spektrofotometri</td>
<td>Spectrophotometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Fenol</td>
<td>0.001</td>
<td>0.002</td>
<td>Spektrofotometri</td>
<td>Spectrophotometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Minyak & Lemak</td>
<td>mg/l</td>
<td>Nilanil</td>
<td>Gravimetri, Spektrofotometri</td>
<td>Timbangan analitik, Spectrophotometer IR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Karbon Kloroform ekstrak</td>
<td>mg/l</td>
<td>0.01</td>
<td>0.5</td>
<td>Spektrofotometri</td>
<td>Spectrophotometer</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>PCB</td>
<td>Nilanil</td>
<td>Nilanil</td>
<td>Kromatografi</td>
<td>- Kromatografi Gas (GC) - HPLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>BAKTERIOL OGI</td>
<td>MPN/1 100 ml</td>
<td>MPN atau Filtrasi</td>
<td>Tabel MPN, filter holder & corong counter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Coliform Group</td>
<td>10000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Coliform tinja</td>
<td>20000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>RADIOAKTIVITAS - TAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Aktivitas beta total</td>
<td>pCi</td>
<td>105</td>
<td>p counting</td>
<td>Geiger – Muller Counter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Strontium – 90</td>
<td>pCi</td>
<td>2</td>
<td>p counting</td>
<td>Geiger – Muller Counter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Pesticide</td>
<td>Unit</td>
<td>Value</td>
<td>Method</td>
<td>Analytical Techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>------</td>
<td>--------</td>
<td>-----------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Aldrin</td>
<td>mg/l</td>
<td>Nil</td>
<td>0.017</td>
<td>Kromatografi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Chlordane</td>
<td>mg/l</td>
<td>Nil</td>
<td>0.003</td>
<td>Kromatografi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>DDT</td>
<td>mg/l</td>
<td>Nil</td>
<td>0.012</td>
<td>Kromatografi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Dieldrin</td>
<td>mg/l</td>
<td>Nil</td>
<td>0.012</td>
<td>Kromatografi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Endrin</td>
<td>mg/l</td>
<td>Nil</td>
<td>0.012</td>
<td>Kromatografi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Heptachlor</td>
<td>mg/l</td>
<td>Nil</td>
<td>0.012</td>
<td>Kromatografi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Heptachlor epoxide</td>
<td>mg/l</td>
<td>Nil</td>
<td>0.012</td>
<td>Kromatografi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Lindane</td>
<td>mg/l</td>
<td>Nil</td>
<td>0.012</td>
<td>Kromatografi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Metoxychlor</td>
<td>mg/l</td>
<td>Nil</td>
<td>0.012</td>
<td>Kromatografi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Organofosfat</td>
<td>mg/l</td>
<td>Nil</td>
<td>0.012</td>
<td>Kromatografi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dan carbamate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Toxaphene</td>
<td>mg/l</td>
<td>Nil</td>
<td>0.012</td>
<td>Kromatografi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Kepmen. KLH No. 02/MENKLH/1988 tentang Penetapan Baku Mutu Lingkungan
Baku Mutu Air Golongan C

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Satuan</th>
<th>Kadar Maksimum</th>
<th>Metode Analisa</th>
<th>Peralatan</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FISIKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Temperatur</td>
<td>°C</td>
<td>Temperatur air normal ± 3°C</td>
<td>Pemusuan</td>
<td>Termometer</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Residu terlarut</td>
<td>Mg/l</td>
<td>2000</td>
<td>Gravimetrik</td>
<td>Tambahkan analitik dan kertas saring 0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KIMIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>pH</td>
<td></td>
<td>6 – 9</td>
<td>Potensiometrik</td>
<td>pH meter</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Tembaga (Cu)</td>
<td>mg/l</td>
<td>0.02</td>
<td>- Spektrofotom etrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotom etrik serapan atom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Seng (Zn)</td>
<td>mg/l</td>
<td>0.02</td>
<td>- Spektrofotom etrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotom etrik serapan atom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Krom heksavalen (Cr 6+)</td>
<td>mg/l</td>
<td>0.05</td>
<td>- Spektrofotom etrik</td>
<td>AAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotom etrik serapan atom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Kadmium (Cd)</td>
<td>mg/l</td>
<td>0.01</td>
<td>- Spektrofotom etrik</td>
<td>- AAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotom etrik serapan atom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Raksa (Hg) (Cr 6+)</td>
<td>mg/l</td>
<td>0.002</td>
<td>- Spektrofotom etrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotom etrik serapan atom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Timbal (Pb)</td>
<td>mg/l</td>
<td>0.03</td>
<td>Spektrofotometrik</td>
<td>- AAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>serapan atom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Arson (As)</td>
<td>mg/l</td>
<td>1</td>
<td>- Spektrofotom etrik</td>
<td>- AAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotom etrik serapan atom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Selenium (Se)</td>
<td>mg/l</td>
<td>0.05</td>
<td>- Spektrofotom etrik</td>
<td>- AAS</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotom etrik serapan atom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Sianida (CN)</td>
<td>mg/l</td>
<td>0.02</td>
<td>- Spektrofotom etrik</td>
<td>- AAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotom etrik serapan atom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Sulfitida (S)</td>
<td>mg/l</td>
<td>0.002</td>
<td>- Tetrametrik</td>
<td>- Buret</td>
<td>- Spektrofotometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Fluorida (F)</td>
<td>mg/l</td>
<td>1.5</td>
<td>Spektrofotometrik</td>
<td>Spektrofotometer</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Amonial bebas (NH3 – N)</td>
<td>mg/l</td>
<td>0.016</td>
<td>Spektrofotometrik</td>
<td>Spektrofotometer</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Nitr (NO2 – N)</td>
<td>mg/l</td>
<td>0.06</td>
<td>Spektrofotometrik</td>
<td>Spektrofotometer</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Parameter</td>
<td>Units</td>
<td>Method</td>
<td>Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Klorin bebas (C12)</td>
<td>mg/l</td>
<td>Spektrofotometrik</td>
<td>Spectrophotometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Oksigen terlarut (DO)</td>
<td>mg/l</td>
<td>Titrik</td>
<td>Butel, DO meter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Senyawa aktif biru metilen</td>
<td>mg/l</td>
<td>Spektrofotometrik</td>
<td>Spectrophotometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Fenol</td>
<td>mg/l</td>
<td>Spektrofotometrik</td>
<td>Spectrophotometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Minyak & Lemak</td>
<td>mg/l</td>
<td>Gravimetrik, Spektrofotometrik infra, Spektrofotometrik IR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radioaktivitas

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aktivitas beta total</td>
<td>pCi</td>
<td>II counting, Geiger Müller Counter, Aktivitas tanpa adanya Sr-90 & Ra-226</td>
</tr>
<tr>
<td>2</td>
<td>Strontium - 90</td>
<td>pCi</td>
<td>II counting, Geiger Müller Counter, Counter</td>
</tr>
<tr>
<td>3</td>
<td>Radium - 226</td>
<td>pCi</td>
<td>I - counting, Geiger Müller Counter, Counter</td>
</tr>
</tbody>
</table>

PESTISIDA

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Units</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DDT</td>
<td>mg/l</td>
<td>Kromatografi</td>
</tr>
<tr>
<td>2</td>
<td>Endrin</td>
<td>mg/l</td>
<td>Kromatografi</td>
</tr>
<tr>
<td>3</td>
<td>BHC</td>
<td>mg/l</td>
<td>Kromatografi</td>
</tr>
<tr>
<td>4</td>
<td>Metypo Piridion</td>
<td>mg/l</td>
<td>Kromatografi</td>
</tr>
<tr>
<td>5</td>
<td>Malathion</td>
<td>mg/l</td>
<td>Kromatografi</td>
</tr>
</tbody>
</table>

Sumber: Kepmen. KLI No. 02/MENKLH/1988 tentang Penetapan Baku Mutu Lingkungan
Baku Mutu Air Golongan D

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Satuan</th>
<th>Kadar Maksimum</th>
<th>Metode Analisa</th>
<th>Peralatan</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Temperatur</td>
<td>°C</td>
<td>Temperatur normal</td>
<td>Pemanasan</td>
<td>Termometer</td>
<td>Sesuai kondisi setempal</td>
</tr>
<tr>
<td>2.</td>
<td>Residu terlarut</td>
<td>mg/l</td>
<td>1000 – 2000</td>
<td>Gravimetrik</td>
<td>Timbangan analitik dan</td>
<td>Terkuntang pors tanaman</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>kertas saring 0.45</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Daya hantar listrik</td>
<td>mhos/cm (25 °C)</td>
<td>1750 – 2250</td>
<td>Potensiométrik</td>
<td>Conductivity meter</td>
<td>Terkuntang tanaman 250, tanaman</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>van jiparan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>pH</td>
<td></td>
<td>5 – 9</td>
<td>Potensiométrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Mangan (Mn)</td>
<td>mg/l</td>
<td>2</td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Tembaga (Cu)</td>
<td>mg/l</td>
<td>0.2</td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Seng (Zn)</td>
<td>mg/l</td>
<td>2</td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Krom (Cr 6+)</td>
<td>mg/l</td>
<td>1</td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Kadmium (Cd)</td>
<td>mg/l</td>
<td>0.01</td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Raksa (Hg)</td>
<td>mg/l</td>
<td>0.005</td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Timbal (Pb)</td>
<td>mg/l</td>
<td>1</td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Arsen (As)</td>
<td>mg/l</td>
<td>0.05</td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Selenium (Se)</td>
<td>µg/kg</td>
<td>0.02</td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Nikel (Ni)</td>
<td>mg/l</td>
<td>0.5</td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Kobalt (Co)</td>
<td>mg/l</td>
<td>0.2</td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Boron (B)</td>
<td>mg/l</td>
<td>1</td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Spektrofotometrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Na (garang ¾ alka)</td>
<td>mg/l</td>
<td>60</td>
<td>Flame fotometri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Sodium Absorption Ratio (SAR)</td>
<td>mg/l</td>
<td>10 – 18</td>
<td>Perhitungan</td>
<td>Kalkulator</td>
<td>Maks. 10 utk. tanaman peka, Maks. 18 utk. tanaman kurang peka</td>
</tr>
<tr>
<td>16.</td>
<td>Residual sodium carbonate (RSC)</td>
<td>mg/l</td>
<td>1.25 – 2.5</td>
<td>Perhitungan</td>
<td>Kalkulator</td>
<td>Maks. 1.25 utk. tanaman peka, Maks. 2.5 utk. tanaman kurang peka</td>
</tr>
<tr>
<td>RADIO-AKTIVITAS</td>
<td>pCi</td>
<td>1000 *)</td>
<td>β counting</td>
<td>Geiger – Muller Counter</td>
<td>*) aktivitas tanpa adanya Sr-90 & Ra-226</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
<td>---------</td>
<td>------------</td>
<td>-------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>1. Aktivitas beta total</td>
<td>pCi</td>
<td>1</td>
<td>β counting</td>
<td>Geiger – Muller Counter</td>
<td>*) aktivitas tanpa adanya Sr-90 & Ra-226</td>
<td></td>
</tr>
<tr>
<td>2. Strontium – 90</td>
<td>pCi</td>
<td>10</td>
<td>β counting</td>
<td>Geiger – Muller Counter</td>
<td>*) aktivitas tanpa adanya Sr-90 & Ra-226</td>
<td></td>
</tr>
<tr>
<td>3. Radium – 226</td>
<td>pCi</td>
<td>3</td>
<td>α counting</td>
<td>α counter</td>
<td>*) aktivitas tanpa adanya Sr-90 & Ra-226</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Kepmen. KLH No. 02/MENKLH/1988 tentang Penetapan Baku Mutu Lingkungan
Baku Mutu Air Limbah *

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Satuan</th>
<th>Golongan Baku Mutu Air Limbah</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>FISIKA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatur</td>
<td>°C</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Zat padat terlarut</td>
<td>mg/l</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>Zat padat tersuspensi</td>
<td>mg/l</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>KIMIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph</td>
<td>mg/l</td>
<td>6 - 9</td>
</tr>
<tr>
<td></td>
<td>Besi terlarut (Fe)</td>
<td>mg/l</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mangan terlarut (Mn)</td>
<td>mg/l</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Barium (Ba)</td>
<td>mg/l</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Tempera (Cu)</td>
<td>mg/l</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Seng (Zn)</td>
<td>mg/l</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Krom heksavalen (Cr 6+)</td>
<td>mg/l</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Krom total (Cr)</td>
<td>mg/l</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Cadmium (Cd)</td>
<td>mg/l</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Raksa (Hg)</td>
<td>mg/l</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Timbal (Pb)</td>
<td>mg/l</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Stanum (Sn)</td>
<td>mg/l</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Arsen (As)</td>
<td>mg/l</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Selenium (Se)</td>
<td>mg/l</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Nikel (Ni)</td>
<td>mg/l</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Kobalt (Co)</td>
<td>mg/l</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Stanida (CN)</td>
<td>mg/l</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Sulfida (H2.S)</td>
<td>mg/l</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Fluorida (F)</td>
<td>mg/l</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Klorin bebas (Cl2)</td>
<td>mg/l</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Amoniak bebas (NH3-N)</td>
<td>mg/l</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Nitrat (NO3-N)</td>
<td>mg/l</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Nitrit (NO2-N)</td>
<td>mg/l</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Kebutuhan oksigen biokimia (BOD)</td>
<td>mg/l</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Kebutuhan oksigen biokimia (COD)</td>
<td>mg/l</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Senyawa aktif baku</td>
<td>mg/l</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Meningkat termasuk PCB ***)</td>
<td>mg/l</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Meningkat termasuk PCB ***)</td>
<td>mg/l</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Meningkat termasuk PCB ***)</td>
<td>mg/l</td>
<td>1</td>
</tr>
</tbody>
</table>

Keterangan:

* Kadara bahan limbah yang memenuhi persyaratan baku mutu air limbah tersebut tidak diperbolehkan dengan cara pengenceran yang airnya secara langsung diambil dari sumber; air.

** Kadara bahan limbah tersebut adalah kadar maksimal yang diperbolehkan, kecuali pH yang meliputi juga kadar minal.

*** Kadara radioaktivitas mengikut peraturan yang berkait.

***) Limbah pestisida yang berasal dari industri yang memformulasi atau memproduksi dan dari konsumen yang mempergunakan untuk pertanian dan lain-lain tidak boleh menyebabkan pencemaran air yang mengganggu pemanfaatannya.
BAKU MUTU UDARA AMBIEN

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Waktu Pengukuran</th>
<th>Baku Mutu</th>
<th>Metode Analisis *)</th>
<th>Peralatan *)</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sulfur dioksida (SO₂)</td>
<td>24 jam</td>
<td>0.10 ppm (260, u g/m³)</td>
<td>Pararosonilin</td>
<td>Spektrophotometer</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Karbon monoksida (CO)</td>
<td>8 jam</td>
<td>20 ppm (2260, u g/m³)</td>
<td>NDIR</td>
<td>NDIR Analyzer</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Oksida nitrogen (Nox)</td>
<td>24 jam</td>
<td>0.05 ppm (92,50 u g/m³)</td>
<td>Saltzman</td>
<td>Spektrophotometer</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Oksidan (O₃)</td>
<td>1 jam</td>
<td>0.10 ppm (200 u g/m³)</td>
<td>Chemiluminescent</td>
<td>Spektrophotometer</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Debu</td>
<td>24 jam</td>
<td>0.26 mg/m³</td>
<td>Gravimetric</td>
<td>Hi – Vol AAS</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Timah hitam (Pb)</td>
<td>24 jam</td>
<td>0.06 mg/m³</td>
<td>Gravimetric</td>
<td>Hi – Vol AAS</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Hidrogen sulfida (H₂S)</td>
<td>30 menit</td>
<td>0.03 ppm (42 u g/m³)</td>
<td>Mercurythio cyanate</td>
<td>Spektrophotometer</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Amonia (NH₃)</td>
<td>24 jam</td>
<td>2 ppm (1360 u g/m³)</td>
<td>Nessler</td>
<td>Spektrophotometer</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Hidrokarbon</td>
<td>3 jam</td>
<td>0.24 ppm (360 u g/m³)</td>
<td>Flame inization</td>
<td>GC</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
- Yang dimaksud dengan "Waktu pengukuran" adalah waktu perataan "averaging time" dan untuk pengukuran dilakukan perhitungan secara "geometric mean".
- Stundard H₂S tidak berlaku untuk daerah yang mengandung H₂S secara alami.
- *) = Yang dianjurkan
- NDIR = Non-dispersive infrared.
- Hi – Vol = High Volume Sampling Method
- AAS = Atomic Absorption Spectrophotometer
- GC = Gas Caromatograph
II. SUMBER UDARA BERGERAK

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Bahan Bakar</th>
<th>Uji Tahap Operasi</th>
<th>(\text{CO} \text{ gr/m}^3)</th>
<th>Baku Mutu Emisi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maksimum</td>
<td>Rata-rata</td>
<td>Maksimum</td>
</tr>
<tr>
<td>1.</td>
<td>Mobil penumpang dengan tempat duduk untuk maksimal 9 orang</td>
<td>Bensin</td>
<td>10</td>
<td>28.2</td>
<td>24.6</td>
</tr>
<tr>
<td>2.</td>
<td>Mobil dengan dari 2,3 ton</td>
<td>Bensin</td>
<td>10</td>
<td>31.4</td>
<td>26.8</td>
</tr>
<tr>
<td>3.</td>
<td>Kendaraan bermotor diesel: *)</td>
<td>Solar</td>
<td>6</td>
<td>1.05</td>
<td>920</td>
</tr>
<tr>
<td></td>
<td>Direct injection</td>
<td>Solar</td>
<td>6</td>
<td>1.05</td>
<td>920</td>
</tr>
<tr>
<td>4.</td>
<td>Kendaraan roda 2 (dua) : *)</td>
<td>Bensin</td>
<td>Idling</td>
<td>4.5</td>
<td>3300</td>
</tr>
</tbody>
</table>

*) dalam ppm

Keterangan:

*) dalam ppm
DAFTAR PUSTAKA

1. Undang-Undang No. 1 tahun 1970 tentang Keselamatan Kerja
2. Undang-Undang No. 13 tahun 2003 tentang Ketenagakerjaan
3. PERMENAKER No. Per 01/MEN/1980 tentang Keselamatan dan Kesehatan Kerja Pada Konstruksi Bangunan
4. PERMENAKER No.: Per.05/MEN/1985 tentang Pesawat Angkat dan Angkut
6. PERMENAKER No.: PER.05/MEN/1996 tentang Sistem Manajemen Keselamatan dan Kesehatan Kerja
7. OHSAS 18001:1999, Occupational Health And Safety Assessment Series
8. OHSAS 18002:2000, Guideline for the implementation of OHSAS 18001:1999
10. Undang-undang No. 4 tahun 1982 tentang Ketentuan-ketentuan Pokok Pengelolaan Lingkungan Hidup
11. Lingkungan Hidup dan Pembangunan, Prof. Dr. Emil Salim, 1991
12. Ekologi, Lingkungan Hidup dan Pembangunan, Prof. Dr. Otto Sumarwoto, 1989
13. Peraturan Pemerintahan No. 51 tahun 1993 tentang AMDAL